Cross your limits once more

Calculus Level 3

lim x n = 1 x n 2 ( x n 1 ) n = 1 x n 3 \large \lim_{x\to\infty} \dfrac{\displaystyle \sum_{n=1}^x n^2 (x-n-1) }{\displaystyle \sum_{n=1}^x n^3 }

If the limit above is equal to a b \dfrac ab , where a a and b b are coprime positive integers , find 2 a + 3 b 2a+3b .

11 0 13 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 26, 2016

To find the limit l = lim x n = 1 x n 2 ( x n 1 ) n = 1 x n 3 = lim x a x b x \displaystyle l = \lim_{x \to \infty} \frac{\sum_{n=1}^x n^2(x-n-1)}{\sum_{n=1}^x n^3} = \lim_{x \to \infty} \frac {a_x}{b_x} , where 0 < b 1 < b 2 < . . . < b x < . . . 0 < b_1<b_2<...<b_x<... and lim x b x = \displaystyle \lim_{x \to \infty} b_x = \infty , we can use Stolz–Cesàro theorem 1 (the / \infty / \infty case). That is, if lim x a x + 1 a x b x + 1 b x = l R \displaystyle \lim_{x \to \infty} \frac {a_{x+1}-a_x}{b_{x+1}-b_x} = l \in \mathbb R , then lim x a x b x \displaystyle \lim_{x \to \infty} \frac {a_x}{b_x} exists and equals to l l .

l = a x + 1 a x b x + 1 b x = lim x n = 1 x + 1 n 2 ( x + 1 n 1 ) n = 1 x n 2 ( x n 1 ) n = 1 x + 1 n 3 n = 1 x n 3 = lim x n = 1 x + 1 n 2 ( x n ) n = 1 x n 2 ( x n ) + n = 1 x n 2 ( x + 1 ) 3 = lim x ( x + 1 ) 2 ( x x 1 ) + 1 6 x ( x + 1 ) ( 2 x + 1 ) ( x + 1 ) 3 = lim x ( 1 x + 1 + 2 x 2 + x 6 ( x 2 + 2 x + 1 ) ) = lim x ( 1 x + 1 + 2 + 1 x 6 ( 1 + 2 x + 1 x 2 ) ) = 1 3 \begin{aligned} l & = \frac {a_{x+1}-a_x}{b_{x+1}-b_x} \\ & = \lim_{x \to \infty} \frac{\sum_{n=1}^{x+1} n^2(x+1-n-1)-\sum_{n=1}^x n^2(x-n-1)}{\sum_{n=1}^{x+1} n^3 - \sum_{n=1}^x n^3} \\ & = \lim_{x \to \infty} \frac {\sum_{n=1}^{x+1} n^2(x-n)-\sum_{n=1}^x n^2(x-n) + \sum_{n=1}^x n^2}{(x+1)^3} \\ & = \lim_{x \to \infty} \frac {(x+1)^2(x-x-1) + \frac 16 x(x+1)(2x+1)}{(x+1)^3} \\ & = \lim_{x \to \infty} \left(-\frac 1{x+1} + \frac {2x^2+x}{6(x^2+2x+1)} \right) \\ & = \lim_{x \to \infty} \left(-\frac 1{x+1} + \frac {2+\frac 1x}{6\left(1+ \frac 2x+ \frac 1{x^2} \right)} \right) \\ & = \frac 13 \end{aligned}

2 a + 3 b = 2 + 9 = 11 \implies 2a+3b = 2+9 = \boxed{11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...