Crossing Two Vectors

Geometry Level 2

Vectors u = 2 i + 9 j + 0 k \vec{u} = 2\mathbf{i} + 9\mathbf{j} +0 \mathbf{k} and v = 13 i + 18 j + 0 k \vec{v} = 13\mathbf{i} + 18\mathbf{j} +0\mathbf{k} . What is the value of u × v |\vec{u} \times \vec{v}| ?


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

Solution 1: u × v = i j k 2 9 0 13 18 0 = i ( 9 × 0 18 × 0 ) + j ( 2 × 0 13 × 0 ) + k ( 2 × 18 9 × 13 ) = 81 k \begin{aligned} \vec{u} \times \vec{v} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 9 & 0 \\ 13 & 18 & 0 \end{vmatrix} \\ &= \mathbf{i}(9\times 0 - 18\times 0) + \mathbf{j}(2\times 0 - 13\times 0) + \mathbf{k}(2\times 18 - 9\times 13) \\ &= -81\mathbf{k} \\ \end{aligned}

Hence u × v = 81 = 81 |\vec{u} \times \vec{v}| = |-81| = 81 .

Solution 2: From the cross product formula, we have u × v = u v sin θ \vec{u} \times \vec{v} = |\vec{u}||\vec{v}|\sin \theta . We can easily calculate the magnitude of the vectors u = 2 2 + 9 2 = 85 |\vec{u}| = \sqrt{2 ^2 + 9 ^2} = \sqrt{85} and v = 1 3 2 + 1 8 2 = 493 |\vec{v}| = \sqrt{13 ^2 + 18 ^2} = \sqrt{493} .

We calculate sin θ \sin \theta by using the dot product formula cos θ = u v u v \cos \theta = \frac{\vec{u}\cdot \vec{v}}{|\vec{u}||\vec{v}|} and substituting cos θ = 1 sin 2 θ \cos \theta = \sqrt{1 - \sin^2 \theta} into the formula. So, we have 1 sin 2 θ = u v u v = 2 13 + 9 18 2 2 + 9 2 1 3 2 + 1 8 2 sin 2 θ = 1 ( 2 13 + 9 18 ) 2 ( 2 2 + 9 2 ) ( 1 3 2 + 1 8 2 ) = 2 2 1 8 2 + 9 2 1 3 2 2 2 13 9 18 ( 2 2 + 9 2 ) ( 1 3 2 + 1 8 2 ) = ( 2 × 18 9 × 13 ) 2 ( 2 2 + 9 2 ) ( 1 3 2 + 1 8 2 ) sin θ = 81 85 493 \begin{aligned} \sqrt{1-\sin^2\theta} &= \frac{\vec{u}\cdot \vec{v}}{|\vec{u}||\vec{v}|} \\ &= \frac{2\cdot13 + 9\cdot 18}{\sqrt{2 ^2 + 9 ^2}\sqrt{13 ^2 + 18 ^2}} \\ \sin^2\theta &= 1 - \frac{(2\cdot 13 + 9\cdot 18) ^2}{(2 ^2 + 9 ^2)(13 ^2 + 18 ^2)} \\ &= \frac{ 2 ^2 \cdot 18 ^2 + 9 ^2 \cdot 13 ^2 - 2 \cdot 2 \cdot 13 \cdot 9 \cdot 18}{(2 ^2 + 9 ^2)(13 ^2 + 18 ^2)} \\ &= \frac{(2\times 18 - 9 \times 13)^2}{(2 ^2 + 9 ^2)(13 ^2 + 18 ^2)} \\ |\sin \theta| & = \frac{81}{\sqrt{85} \cdot \sqrt{493}} \\ \end{aligned}

Hence u × v = u v sin θ = 85 493 81 85 493 = 81 |\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}||\sin \theta| = \sqrt{85} \cdot \sqrt{493} \cdot \frac{81}{\sqrt{85} \cdot \sqrt{493}} = 81 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...