Cryptic Algebra V.2

Make the statement below true by substituting numbers from 0 0 to 9 9 for each of the letters with S S , T T , and P P not equal to 0 0 .

S T O P T O P S = P O T S \overline{STOP} - \overline{TOPS} = \overline{POTS}

Using the same values from above, what would be the numerical value of P O T × T O O S O \dfrac{\overline{POT} \times \overline{TOO}}{\overline{SO}} ? Use a calculator if needed.


The answer is 890.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 28, 2020

We can rewrite S T O P T O P S = P O T S \overline{STOP}-\overline{TOPS} = \overline{POTS} as:

1000 S + 100 T + 10 O + P 1000 T 100 O 10 P S = 1000 P + 100 O + 10 T + S 998 S = 1009 P + 910 T + 190 O \begin{aligned} 1000S+100T+10O+P-1000T-100O-10P-S & = 1000P+100O+10T+S \\ \implies 998 S & = 1009P + 910T + 190O \end{aligned}

From the above equation, we note that:

  1. S > P S>P
  2. Since the LHS is even, the RHS must also be even and P P is even. And since P 0 P \ne 0 , P = 2 P = 2 , 4 4 , 6 6 , or 8 8 .
  3. Taking modulo 10 10 on both sides, we have: 8 S 9 P (mod 10) 8S \equiv 9P \text{ (mod 10)} . Then if { P = 2 S = 1 < P Unacceptable P = 4 S = 2 < P Unacceptable P = 6 S = 8 > P Acceptable P = 8 S = 9 > P Acceptable \\ \begin{cases} P = 2 & \implies S = 1 \red {< P} & \small \red{\text{Unacceptable}} \\ P = 4 & \implies S = 2 \red {< P} & \small \red{\text{Unacceptable}} \\ P = 6 & \implies S = 8 \blue{> P} & \small \red{\text{Acceptable}} \\ P = 8 & \implies S = 9 \blue{> P} & \small \red{\text{Acceptable}} \end{cases}
  4. If P = 6 P=6 and S = 8 S=8 , then 7984 = 6054 + 910 T + 190 O 91 T + 19 O = 193 7984 = 6054 + 910T + 190O \implies 91T + 19O = 193 . There is no solution.
  5. If P = 8 P=8 and S = 9 S=9 , then 8982 = 8072 + 910 T + 190 O 910 T + 190 O = 910 8982 = 8072 + 910T + 190O \implies 910T + 190O = 910 , T = 1 \implies T=1 and O = 0 O=0 .

Therefore, O = 0 O=0 , P = 8 P=8 , S = 9 S=9 , and T = 1 T=1 and P O T × T O O S O = 801 × 100 90 = 890 \dfrac {\overline{POT}\times \overline{TOO}}{\overline{SO}} = \dfrac {801 \times 100}{90} = \boxed{890} .


Reference: Modular arithmetic

We can easily see that

(i) P P must be even.

(ii) S S must be as large as possible. In particular, S > 5 S>5 .

(iii) S + S = 10 + P S+S=10+P , P + T + 1 = 10 + O P+T+1=10+O , O + O + 1 = T O+O+1=T or 10 + T 10+T , P + T = S P+T=S or P + T + 1 = S P+T+1=S .

Considering all these we get T = 1 , O = 0 , P = 8 , S = 9 T=1, O=0, P=8, S=9 . So the required value of the given fraction is 801 × 100 90 = 890 \dfrac{801\times 100}{90}=\boxed {890} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...