Cryptogram 23

Algebra Level 2

A A , B B , C C , and D D each represents a different digit between 1 to 9, such that A B C D \overline{ABCD} is a 4-digit number.

If A × A B = C D A \times \overline{AB}=\overline{CD} , what is the 3-digit number we get, when we divide A B C D \overline{ABCD} by the A B \overline{AB} ?

\1 01 \101 10 A \overline{10A} 11 A \overline{11A} 1 A B \overline{1AB}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Henry U
Feb 12, 2019

A A B = C D C D : A B = A A \cdot \overline{AB} = \overline{CD} \Leftrightarrow \overline{CD} : \overline{AB} = A

A B C D : A B = ( 100 A B + C D ) : A B = 100 A B : A B + C D : A B = 100 + A = 10 A \begin{aligned} & \overline{ABCD} : \overline{AB} \\ =& (100\overline{AB}+\overline{CD}) : \overline{AB} \\ =& 100\overline{AB} : \overline{AB} + \overline{CD} : \overline{AB} \\ =& 100 + A \\ =& \boxed{\overline{10A}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...