Cube

Algebra Level 2

Find the value of x x .

x = x = 9 9 3 + 3 ( 99 ) 2 + 3 ( 99 ) + 1 99^{3} + 3(99)^{2} + 3(99) + 1 .


The answer is 1000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x = 9 9 3 + 3 ( 99 ) 2 + 3 ( 99 ) + 1 \implies x =99^{3} + 3(99)^{2} + 3(99) + 1

x = ( 99 + 1 ) 3 = 10 0 3 = 1000000 x=(99+1)^3=100^3=\boxed{1000000} .

let y=99

so:

x=99^3+(3)(99)^2+(3)(99)+1 x=y^3+3y^2+3y+1 x=(y+1)^3 x=[(99)+1]^3 x=(100)^3 x=1000000

stephen liado - 4 years, 8 months ago
. .
Feb 19, 2021

x = 9 9 3 + 3 × 9 9 2 + 3 × 99 + 1 970299 + 29403 + 297 + 1 1000000 . x = 99 ^ { 3 } + 3 \times 99 ^ { 2 } + 3 \times 99 + 1 \rightarrow 970299 + 29403 + 297 + 1 \Rightarrow \boxed { 1000000 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...