Cube Puzzle

Geometry Level 4

A cube with side length a a has its eight vertices specified in the Cartesian space as follows:

A ( 0 , 0 , 0 ) , B ( a , 0 , 0 ) , C ( a , a , 0 ) , D ( 0 , a , 0 ) , E ( 0 , 0 , a ) , F ( a , 0 , a ) , G ( a , a , a ) , H ( 0 , a , a ) A(0, 0, 0) , B(a, 0, 0), C(a, a, 0), D(0, a, 0), E(0, 0, a), F(a, 0, a), G(a, a, a), H(0, a, a)

There is a point P = ( x , y , z ) P = (x, y, z) inside the cube such that

P A = 70 , P B = 97 , P C = 88 , P E = 43 PA = \sqrt{70}, PB = \sqrt{97}, PC = \sqrt{88}, PE = \sqrt{43}

Find the sum a + x + y + z a + x + y + z .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 10, 2020

By Pythagorean theorem , we have:

{ x 2 + y 2 + z 2 = 70 . . . ( 1 ) ( x a ) 2 + y 2 + z 2 = 97 . . . ( 2 ) ( x a ) 2 + ( y a ) 2 + z 2 = 88 . . . ( 3 ) x 2 + y 2 + ( z a ) 2 = 43 . . . ( 4 ) \begin{cases} x^2+y^2+z^2 = 70 & ...(1) \\ (x-a)^2+y^2+z^2 = 97 & ...(2) \\ (x-a)^2+(y-a)^2+z^2 = 88 & ...(3) \\ x^2+y^2+(z-a)^2 = 43 & ...(4) \end{cases}

( 1 ) ( 2 ) : 2 a x a 2 = 27 x = a 2 27 2 a ( 2 ) ( 3 ) : 2 a y a 2 = 9 y = a 2 + 9 2 a ( 1 ) ( 4 ) : 2 a z a 2 = 27 z = a 2 + 27 2 a \begin{array} {lll} (1)-(2): & 2ax - a^2 = -27 & \implies x = \dfrac {a^2 - 27}{2a} \\ (2)-(3): & 2ay - a^2 = 9 & \implies y = \dfrac {a^2 +9}{2a} \\ (1)-(4): & 2az - a^2 = 27 & \implies z = \dfrac {a^2 +27}{2a} \end{array}

Substitute x x , y y , and z z in ( 1 ) (1) :

( a 2 27 2 a ) 2 + ( a 2 + 9 2 a ) 2 + ( a 2 + 27 2 a ) 2 = 70 3 a 4 262 a 2 + 1539 = 0 ( 3 a 2 19 ) ( a 2 81 ) = 0 \begin{aligned} \left(\frac {a^2 - 27}{2a} \right)^2 + \left(\frac {a^2 +9}{2a} \right)^2 + \left(\frac {a^2 + 27}{2a} \right)^2 & = 70 \\ 3a^4-262a^2 + 1539 & = 0 \\ (3a^2-19)(a^2-81) & = 0 \end{aligned}

{ a 2 = 19 3 a = 19 3 a 2 = 81 a = 9 \implies \begin{cases} a^2 = \dfrac {19}3 & \implies a = \sqrt{\dfrac {19}3} \\ a^2 = 81 & \implies a = 9 \end{cases}

For positive x x , a = 9 a = 9 and { x = a 2 27 2 a = 3 y = a 2 + 9 2 a = 5 z = a 2 + 27 2 a = 6 \begin{cases} x = \dfrac {a^2 - 27}{2a} & = 3 \\ y = \dfrac {a^2 +9}{2a} & = 5 \\ z = \dfrac {a^2 +27}{2a} & = 6 \end{cases}

Therefore a + x + y + z = 9 + 3 + 5 + 6 = 23 a+x+y+z = 9+3+5+6 = \boxed {23} .

@Chew-Seong Cheong , a diagram here would be helpful to see. Is it possible that you can add one? I would have definitely made one but I don't know how to make one in 3D. Thanks!

Mahdi Raza - 1 year ago

Log in to reply

Oops! I'm not able too.

Chew-Seong Cheong - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...