Cube Root Inequality

Algebra Level 2

True or False:

4 1 3 > 1.5 \large 4^\frac 13 >1.5

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 16, 2018

4 1 3 = 2 2 3 = ( 1 + 1 ) 2 3 By binomial expansion = 1 + 2 3 2 3 1 3 2 ! + 2 3 1 3 4 3 3 ! = 1 + 2 3 1 9 + 4 81 \begin{aligned} 4^\frac 13 & = 2^\frac 23 \\ & = (1+1)^\frac 23 & \small \color{#3D99F6} \text{By binomial expansion} \\ & = 1 + \frac 23 - \frac {\frac 23 \cdot \frac 13 }{2!} + \frac {\frac 23 \cdot \frac 13 \cdot \frac 43}{3!} - \cdots \\ & = {\color{#3D99F6}1 + \frac 23 - \frac 19} + \frac 4{81} - \cdots \end{aligned}

4 1 3 > 1 + 2 3 1 9 = 14 9 1.555 > 1.5 \begin{aligned} \implies 4^\frac 13 > {\color{#3D99F6}1 + \frac 23 - \frac 19} = \frac {14}9 \approx 1.555 > 1.5 \end{aligned}

If a 3 > b 3 a^3>b^3 , then a > b a>b , where a, b are real numbers.

From this let a = 4 1 / 3 a = 4^{1/3} and b = 1.5 b = 1.5

a 3 = 4 a^3 = 4 and b 3 = 3.375 b^3 =3.375

Clearly a 3 > b 3 a^3>b^3 which means a > b a>b , so 4 1 / 3 > 1.5 4^{1/3}>1.5

Mahmoud Khattab
Jul 10, 2018

S u p p o s e t h a t 4 1 3 > 1.5 Suppose\ that\ 4^{\frac {1}{3}}>1.5

S o 4 1 3 > 3 2 So\ 4^{\frac {1}{3}}>{\frac {3}{2}}

B y c u b i n g b o t h s i d e s w e c o n c l u d e t h a t 4 > 27 8 By\ cubing\ both\ sides\ we\ conclude\ that\ 4>{\frac {27}{8}}

S o 32 > 27 So\ 32>27

F r o m t h a t w e c o n c l u d e t h a t t h e h y p o t h e s i s i s t r u e . **From\ that\ we\ conclude\ that\ the hypothesis\ is\ true.**

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...