Cube root of Unity.

Algebra Level 3

I f z 2 + z + 1 = 0 W h e r e z i s a c o m p l e x n u m b e r , t h e n f i n d v a l u e o f ( z 1 + 1 z 1 ) 2 + ( z 2 + 1 z 2 ) 2 + ( z 3 + 1 z 3 ) 2 + . . . + ( z 6 + 1 z 6 ) 2 If\quad { z }^{ 2 }+z+1\quad =\quad 0\quad Where\quad z\quad is\quad a\quad complex\quad number,\\ then\quad find\quad value\quad of\quad \\ { ({ z }^{ 1 }+\frac { 1 }{ { z }^{ 1 } } ) }^{ 2 }+{ ({ z }^{ 2 }+\frac { 1 }{ { z }^{ 2 } } ) }^{ 2 }+{ ({ z }^{ 3 }+\frac { 1 }{ { z }^{ 3 } } ) }^{ 2 }+...+{ ({ z }^{ 6 }+\frac { 1 }{ { z }^{ 6 } } ) }^{ 2 }\quad

12 6 18 54

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Mar 7, 2015

On solving the equation z 2 + z + 1 = 0 { z }^{ 2 }+z+1 = 0 we get z = ω , ω 2 z=\omega ,{ \omega }^{ 2 } where ω , ω 2 \omega ,{ \omega }^{ 2 } are cube roots of unity.

Thus we get z = ω a n d 1 z = ω 2 z=\omega \quad and\quad \frac { 1 }{ z } ={ \omega }^{ 2 }

z + 1 z = 1 ; z 2 + 1 z 2 = 1 ; z 4 + 1 z 4 = 1 ; z 5 + 1 z 5 = 1 \Longrightarrow z+\frac { 1 }{ z } =-1\quad ;\quad { z }^{ 2 }+\frac { 1 }{ { z }^{ 2 } } =-1\quad ;{ \quad z }^{ 4 }+\frac { 1 }{ { z }^{ 4 } } =-1\quad ;{ \quad z }^{ 5 }+\frac { 1 }{ { z }^{ 5 } } =-1 and

z 3 + 1 z 3 = 2 ; z 6 + 1 z 6 = 2 { \quad z }^{ 3 }+\frac { 1 }{ { z }^{ 3 } } =2\quad ;{ \quad z }^{ 6 }+\frac { 1 }{ { z }^{ 6 } } =2

Thus value of ( z 1 + 1 z 1 ) 2 + ( z 2 + 1 z 2 ) 2 + ( z 3 + 1 z 3 ) 2 + . . . + ( z 6 + 1 z 6 ) 2 { ({ z }^{ 1 }+\frac { 1 }{ { z }^{ 1 } } ) }^{ 2 }+{ ({ z }^{ 2 }+\frac { 1 }{ { z }^{ 2 } } ) }^{ 2 }+{ ({ z }^{ 3 }+\frac { 1 }{ { z }^{ 3 } } ) }^{ 2 }+...+{ ({ z }^{ 6 }+\frac { 1 }{ { z }^{ 6 } } ) }^{ 2 }\quad ) = 4 + 2 ( 2 2 ) 4+2{ (2 }^{ 2 }) = 12 \boxed{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...