Cube root sum

Algebra Level 2

2 + 5 3 + 2 5 3 = ? \large \sqrt [ 3 ]{ 2+\sqrt { 5 } } +\sqrt [ 3 ]{ 2-\sqrt { 5 } } =?

Find the value up to two decimal.


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Nov 6, 2017

Let a = 2 + 5 3 \large{ a= \sqrt [ 3 ]{ 2+\sqrt { 5 } }}

and b = 2 5 3 \large{b=\sqrt [ 3 ]{ 2-\sqrt { 5 }} }

x = 2 + 5 3 + 2 5 3 = a + b x 3 = ( a + b ) 3 x 3 = a 3 + b 3 + 3 a b ( a + b ) x 3 = ( 2 + 5 3 ) 3 + ( 2 5 3 ) 3 + 3 ( 2 + 5 3 ) ( 2 5 3 ) ( 2 + 5 3 + 2 5 3 ) x 3 = 2 + 5 + 2 5 + 3 ( 2 2 5 ) × x x 3 = 4 + 3 × ( 1 ) × x x 3 = 4 3 x x 3 + 3 x 4 = 0 \large{x= \sqrt [ 3 ]{ 2+\sqrt { 5 } } +\sqrt [ 3 ]{ 2-\sqrt { 5 } }=a+b\\ \Rightarrow x^3=(a+b)^3\\ \Rightarrow x^3=a^3+b^3+3ab(a+b)\\ \Rightarrow x^3=\left(\sqrt [ 3 ]{ 2+\sqrt { 5 } }\right)^3+\left(\sqrt [ 3 ]{ 2-\sqrt { 5 } }\right)^3+3\left(\sqrt [ 3 ]{ 2+\sqrt { 5 } }\right)\left(\sqrt [ 3 ]{ 2-\sqrt { 5 } }\right)\left(\sqrt [ 3 ]{ 2+\sqrt { 5 } }+\sqrt [ 3 ]{ 2-\sqrt { 5 } }\right)\\ \Rightarrow x^3=2+\sqrt5+2-\sqrt5+3(2^2-5)\times{x}\\ \Rightarrow x^3=4+3\times(-1)\times{x}\\ \Rightarrow x^3=4-3x\\ \Rightarrow x^3+3x-4=0}

Solving that x = 2 + 5 3 + 2 5 3 = 1 \large{x=\sqrt [ 3 ]{ 2+\sqrt { 5 } } +\sqrt [ 3 ]{ 2-\sqrt { 5 } }=1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...