Cube rooted equation

Algebra Level 2

Find sum of all real solutions to the equation below

x 1 3 + 3 x 1 3 = x + 1 3 . \sqrt[3]{x-1}+\sqrt[3]{3x-1}=\sqrt[3]{x+1}.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sathvik Acharya
Nov 29, 2020

In the hope of simplifying the given equation we rewrite the given terms as, x + 1 3 = a \sqrt[3]{x+1}=a x 1 3 = b \sqrt[3]{x-1}=b 3 x 1 = 2 b 3 + a 3 \;\;\;\; \implies 3x-1=2b^3+a^3 From the given equation, we have ( 3 x 1 3 ) 3 = ( x + 1 3 x 1 3 ) 3 (\sqrt[3]{3x-1})^3=(\sqrt[3]{x+1}-\sqrt[3]{x-1})^3 2 b 3 + a 3 = ( a b ) 3 = a 3 3 a b ( a b ) b 3 \;\;\;\;\;\;\;\;\;\;\;\;\implies 2b^3+a^3=(a-b)^3=a^3-3ab(a-b)-b^3 This gives us the relation b 3 = a b ( a b ) b^3=-ab(a-b) which leads us to our first solution, b = 0 x = 1 b=0\implies x=1 If b 0 b\neq 0 , we have b 2 = a ( a b ) a 2 + b 2 = a b b^2=-a(a-b)\implies a^2+b^2=ab Since a 3 = x + 1 a^3=x+1 and b 3 = x 1 b^3=x-1 , we observe that a 3 b 3 = 2 ( a b ) ( a 2 + a b + b 2 ) = 2 a^3-b^3=2\implies (a-b)(a^2+ab+b^2)=2 Using the previous relations, ( a b ) ( a 2 + a b + b 2 ) = ( a b ) ( 2 a b ) = 2 b 3 = 2 (a-b)(a^2+ab+b^2)=(a-b)(2ab)=-2b^3=2 which leads us to the solution b = 1 x = 0 b=-1\implies x=0 But x = 0 x=0 does not satisfy the original equation.

Therefore, x = 1 \boxed{x=1} is the only solution to the given equation

Chew-Seong Cheong
Nov 29, 2020

x 1 3 + 3 x 1 3 = x + 1 3 3 x 1 3 = x + 1 3 x 1 3 Cubing both sides 3 x 1 = ( x + 1 ) 3 ( x + 1 ) 2 ( x 1 ) 3 + 3 ( x + 1 ) ( x 1 ) 2 3 ( x 1 ) 3 x 1 = 3 x 2 1 3 ( x 1 3 x + 1 3 ) + 2 3 x 3 = 3 x 2 1 3 ( 3 x 1 3 ) Divide both sides by 3 x 1 = ( x 2 1 ) ( 3 x 1 ) 3 Cubing both sides x 3 3 x 2 + 3 x 1 = 3 x 3 + x 2 + 3 x 1 4 x 3 4 x 2 = 0 For x 0 x = 1 \begin{aligned} \sqrt[3]{x-1} + \sqrt[3]{3x-1} & = \sqrt[3]{x+1} \\ \sqrt[3]{3x-1} & = \sqrt[3]{x+1} - \sqrt[3]{x-1} & \small \blue{\text{Cubing both sides}} \\ 3x - 1 & = (x+1) - 3\sqrt[3]{(x+1)^2(x-1)} + 3\sqrt[3]{(x+1)(x-1)^2} - (x-1) \\ 3x - 1 & = 3\sqrt[3]{x^2-1}\left(\sqrt[3]{x-1} - \sqrt[3]{x+1} \right) + 2 \\ 3x - 3 & = 3\sqrt[3]{x^2-1}\left(-\sqrt[3]{3x-1}\right) & \small \blue{\text{Divide both sides by 3}} \\ x-1 & = - \sqrt[3]{(x^2-1)(3x-1)} & \small \blue{\text{Cubing both sides}} \\ x^3-3x^2+3x-1 & = - 3x^3 + x^2 + 3x - 1 \\ 4x^3 - 4x^2 & = 0 & \small \blue{\text{For }x \ne 0} \\ \implies x & = 1 \end{aligned}

The sum of all real solutions is 1 \boxed 1 .

Dwaipayan Shikari
Nov 29, 2020

3 x 1 3 = x + 1 3 x 1 3 \sqrt[3]{3x-1}= \sqrt[3]{x+1} -\sqrt[3]{x-1} 3 x 1 = x + 1 x + 1 3 ( 3 x 1 ) ( x 2 1 ) 3 3x-1 = x+1-x+1-3\sqrt[3]{(3x-1)(x^2 -1)}

( x 1 ) 3 = ( 3 x 1 ) ( x 2 1 ) (x-1)^3 =-(3x-1)(x^2 -1) x 3 1 3 x 2 + 3 x = 3 x 3 + x 2 + 3 x 1 \implies{x^3-1-3x^2 +3x = -3x^3+x^2 +3x-1}

So 4 x 2 ( x 1 ) = 0 4x^2(x-1)=0

Real solution is 1 {1 } . Sum of the solutions is 1 \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...