Cube Rooted Till 2019

Calculus Level 4

1 1 3 + 1 2 3 + 1 3 3 + + 1 2019 3 = ? \large \left \lfloor \dfrac{1}{\sqrt[3]{1}} + \dfrac{1}{\sqrt[3]{2}} + \dfrac{1}{\sqrt[3]{3}} + \cdots + \dfrac{1}{\sqrt[3]{2019}} \right \rfloor = \, ?

Notation: \lfloor \cdot \rfloor denotes the floor function .

237 239 240 238

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 13, 2019

We can estimate the value of n = 1 2019 1 n 3 \displaystyle \sum_{n=1}^{2019} \frac 1{\sqrt[3]n} using a b 1 x 3 d x \displaystyle \int_a^b \frac 1{\sqrt[3]x} dx with appropriate limits a a and b b . Since f ( x ) = 1 x 3 f(x) = \dfrac 1{\sqrt[3]x} is convex, the area under the curve is large when the curve is above the bar than when it is under the bar (see figure). Therefore, we have:

1 2 1 3 + 1 2019 1 x 3 d x + 1 2 2019 3 < n = 1 2019 1 n 3 < 0.5 2019.5 1 x 3 d x 1 2 1 3 + 3 2 x 2 3 1 2019 + 1 2 2019 3 < n = 1 2019 1 n 3 < 3 2 x 2 3 0.5 2019.5 238.6553713 < n = 1 2019 1 n 3 < 238.7104288 \begin{aligned} \frac 1{2\sqrt[3]1} + \int_1^{2019} \frac 1{\sqrt[3] x} dx+ \frac 1{2\sqrt[3]{2019}} < & \sum_{n=1}^{2019} \frac 1{\sqrt[3]n} < \int_{0.5}^{2019.5} \frac 1{\sqrt[3] x} dx \\ \frac 1{2\sqrt[3]1} + \frac 32 x^\frac 23 \bigg|_1^{2019} + \frac 1{2\sqrt[3]{2019}} < & \sum_{n=1}^{2019} \frac 1{\sqrt[3]n} < \frac 32 x^\frac 23 \bigg|_{0.5}^{2019.5} \\ 238.6553713 < & \sum_{n=1}^{2019} \frac 1{\sqrt[3]n} < 238.7104288 \end{aligned}

n = 1 2019 1 n 3 = 238 \implies \displaystyle \left \lfloor \sum_{n=1}^{2019} \frac 1{\sqrt[3]n} \right \rfloor = \boxed{238} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...