Cube roots

Algebra Level 3

x x x . . . . . . . . 3 3 3 3 = ? \sqrt[3]{ x \sqrt[3]{x \sqrt[3]{ x \sqrt[3]{........ }}}} = ?

Note - x 0 x \neq 0

This problem is a part of the sets - 3's & 4's & QuEsTiOnS .
x x x 3 x^3 x 2 3 x^{\frac{2}{3}} x 1 3 x^{ \frac{1}{3} } x \sqrt{ x }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Paul Ryan Longhas
Mar 26, 2015

Let y = x x x . . . . . . . . 3 3 3 3 y = \sqrt[3]{ x \sqrt[3]{x \sqrt[3]{ x \sqrt[3]{........ }}}}

= > y 3 = x ( x x x . . . . . . . . 3 3 3 3 => y^3 = x(\sqrt[3]{ x \sqrt[3]{x \sqrt[3]{ x \sqrt[3]{........ }}}}

= > y 3 = x y => y^3 = xy

= > y 3 x y = 0 = > y ( y 2 x ) = 0 => y^3 - xy = 0 => y(y^2 -x)=0

= > y = 0 => y = 0 or y = x y = \sqrt{x}

If x = 0 > y = 0 x = 0 -----> y = 0

If x R > y = x x \in \mathbb{R^{*}} -----> y = \sqrt{x}

The problem not include that x 0 x \neq 0 .

@Sakanksha Deo can you add the assumption x 0 x \neq 0 .

Thank you....... Done

Sakanksha Deo - 6 years, 2 months ago

Log in to reply

Hey Sakansha do you go to any coaching class?

Aman Atman - 6 years, 1 month ago

Nice solution! I took a similar approach.

Benry Burfer - 5 years, 8 months ago
Jason Hughes
May 11, 2015

Let y = x x x . . . . . . . . 3 3 3 3 y= \sqrt[3]{ x \sqrt[3]{x \sqrt[3]{ x \sqrt[3]{........ }}}} rearrange that as y = x 1 3 + 1 9 + 1 27 + . . . y= x^{ \frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...}

The power x x is raised to is a infinite geometric series which converges to 1 2 \frac{1}{2} so y equals x 1 2 x^{\frac{1}{2}} or x \sqrt{x} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...