Cubes again!

Which of the following positive integers can be written as a sum of two positive cubes?

1336 1169 1339 None of these 1255 1089 1130 1273

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Michael Mendrin
Sep 28, 2017

Here's a quick way to find the one number out of the choices that can be the sum of two cubes. First, we have the identity

a 3 + b 3 = ( a + b ) ( ( a + b ) 2 3 a b ) a^3+b^3= (a+b)( {(a+b)}^2-3ab )

so that

a b = 1 3 ( ( a + b ) 2 n ) ab = \dfrac{1}{3} ( {(a+b)}^2 - n)

where n n is the larger factor of any one of the 7 numbers given as choices. Those numbers can be factored into

7 167 7 \cdot 167
13 103 13 \cdot 103
19 67 19 \cdot 67
5 251 5 \cdot 251
8 167 8 \cdot 167
9 121 9 \cdot 121
10 113 10 \cdot 113

Only 13 103 13 \cdot 103 yields an integer for a b ab , so a bit more work gets us

1 1 3 + 2 3 = 1339 11^3+2^3=1339

Thanks for a quick way.

Niranjan Khanderia - 3 years, 8 months ago
Patrick Corn
Oct 10, 2017

By the way, if you drop the requirement that the cubes be positive and throw in another cube, the problem becomes extremely difficult.

For instance, is 33 33 the sum of three integer cubes? How about 42 42 ?

No one knows!

It is still unknown. ¨ \ddot \smile

Munem Shahriar - 3 years, 8 months ago

T h e n u m b e r s a r e g r e a t e r t h a n 1 0 3 = 1000 , S o I c h e c k e d 1 1 3 = 1331 a n d 1339 w a s g r e a t e r t h a n 1339. S o I c h e c k e d 1339 1331 = 8 = 2 3 ! ! ! ! ! ! T h e a n s w e r . I f i t w a s n o t t h e a n s w e r m y a p p r o a c h : L e t t h e t w o A 3 + B 3 = N , A > B A l l N 3 < 11 , s o b i g g e s t A = 10. T h e c u b e s a r e . . . . . 1 3 = 1 , 2 3 = 8 , 3 3 = 27 4 3 = 64 , 5 3 = 125 , 6 3 = 216 , 7 3 = 343 , 8 3 = 512 , 9 3 = 729. N o n e o f t h e n u m b e r ( N 1000 ) i s a s a c u b . S o A = 10 n o t p o s s i b l e f o r t h e g i v e n n u m b e r s . S i m i l a r l y i f f o r s o m e N , A = 9 , ( N 9 3 ) = ( N 729 ) w e r e f r o m s m a l l e s t = 1089 729 = 360 t o b i g g e s t = 1336 729 = 607. o n l y c u b w i t h i n t h i s i s 8 3 = 512. N o n e o f t h e ( N 729 ) g i v e s 512. S o 9 a n d 8 c a n n o t b e t h e s o l u t i o n . F o r A = 8 , B = 8 N = 512 + 512 = 1024 b u t t h i s i s n o t g i v e n . S o t h e r e i s n o s o l u t i o n f r o m t h e g i v e n n u m b e r s a n d 1024. A l l n u m b e r s a r e g r e a t e r t h a n 1024 s o n o s o l u t i o n f o r o t h e r n u m b e r s . The~ numbers~are~ greater~than~ 10^3=1000, \\ So~I~ checked ~~11^3=1331~ and ~1339~ was ~greater~than ~1339.\\ So~ I~checked~1339-1331=8=2^3 !!!!!! ~~ The~ answer.\\ If~ it~ was~ not~ the~ answer~ my ~approach:\\ Let~the~two~A^3+B^3=N, A>B\\ All~\sqrt[3]{N}<11,~~so~biggest~A=10. \\ The ~cubes~are..... 1^3=1,~~~~2^3=8,~~~~3^3=27~~~~4^3=64,~~~~5^3=125,~~~~6^3=216,~~~~7^3=343,~~~~8^3=512,~~~~9^3=729.\\ None ~of~the~number~(N-1000)~ is~as~a~cub.~~So~A=10~not~possible~for~the~given~numbers. \\ Similarly~if ~for~some~N,~A=9,~(N-9^3)= (N-729)~ were ~from~~smallest=1089-729=360 ~to ~biggest=1336-729=607.~~only~cub~ within ~this~is~ 8^3=512.\\ None ~of~ the~(N-729)~gives~512.~~So~9 ~and~8~cannot~be~the~solution.~~~For~A=8,~B=8 ~N=512+512=1024~but~this~is~not~given.\\ So~there~is~no~solution~from~the~given~numbers~and~1024. ~All~numbers~are~greater~than~1024~so ~no~solution~for~other~ numbers.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...