Find the product of all possible integer values of which satisfy the following equation for some
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let us write the above Diophantine Equation as:
y 3 − 8 = x 3 + 8 x 2 − 6 x ⇒ ( y − 2 ) ( y 2 + 2 y + 4 ) = x ( x 2 + 8 x − 6 )
Upon observation, ( x , y ) = ( 0 , 2 ) is a trivial solution. Now let:
y − 2 = x ;
y 2 + 2 y + 4 = x 2 + 8 x − 6
which solves as y 2 + 2 y + 4 = ( y − 2 ) 2 + 8 ( y − 2 ) − 6 ⇒ y = 1 1 . Hence ( x , y ) = ( 9 , 1 1 ) is another pair. If we now take:
y − 2 = x 2 + 8 x − 6 ;
y 2 + 2 y + 4 = x
we now obtain y − 2 = ( y 2 + 2 y + 4 ) 2 + 8 ( y 2 + 2 y + 4 ) − 6 ⇒ 0 = y 4 + 4 y 3 + 2 0 y 2 + 3 1 y + 4 4 , which contains two complex conjugate pairs of roots.
There are ultimately two integral pairs ( x , y ) = ( 0 , 2 ) ; ( 9 , 1 1 ) that solve this Diophantine Equation, and our required y-product computes to 2 2 .