Cubes and cubes

Algebra Level 4

( x 2 + x 2 ) 3 + ( 2 x 2 x 1 ) 3 = 27 ( x 2 1 ) 3 \large (x^{2}+x-2)^{3}+(2x^{2}-x-1)^{3}=27 (x^{2}-1)^3

If the four distinct real roots to the equation above are a a , b b , c c and d d , find ( a + b + c + d ) -(a+b+c+d) .


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 17, 2017

Relevant wiki: Algebraic Identities

Let α = x 2 + x 2 \alpha = x^2+x-2 , β = 2 x 2 x 1 \beta = 2x^2-x-1 and γ = 3 ( x 2 1 ) \gamma = -3(x^2-1) .

Then, we note that: α + β + γ = x 2 + x 2 + 2 x 2 x 1 3 x 2 + 3 = 0 \begin{aligned} \alpha + \beta + \gamma & = x^2+x-2 + 2x^2-x-1 -3x^2+3 = 0 \end{aligned}

For α + β + γ = 0 \alpha + \beta + \gamma = 0 α 3 + β 3 + γ 3 = 3 α β γ \implies \alpha^3 + \beta^3 + \gamma^3 = 3 \alpha \beta \gamma . Since α 3 + β 3 + γ 3 = 0 \alpha^3 + \beta^3 + \gamma^3 = 0 3 α β γ = 0 \implies 3 \alpha \beta \gamma = 0 . Therefore, we have:

α β γ = 0 ( x 2 + x 2 ) ( 2 x 2 x 1 ) ( 3 3 x 2 ) = 0 ( x 2 + x 2 ) ( 2 x 2 x 1 ) ( x 2 1 ) = 0 ( x + 2 ) ( x 1 ) ( 2 x + 1 ) ( x 1 ) ( x + 1 ) ( x 1 ) = 0 ( x + 2 ) ( 2 x + 1 ) ( x + 1 ) ( x 1 ) 3 = 0 x = 2 , 1 2 , 1 , 1 \begin{aligned} \alpha \beta \gamma & = 0 \\ (x^2+x-2)(2x^2-x-1)(3-3x^2) & = 0 \\ (x^2+x-2)(2x^2-x-1)(x^2-1) & = 0 \\ (x+2)(x-1)(2x+1)(x-1)(x+1)(x-1) & = 0 \\ (x+2)(2x+1)(x+1)(x-1)^3 & = 0 \\ \implies x & = -2, \ -\frac 12, \ - 1, \ 1 \end{aligned}

( a + b + c + d ) = ( 2 1 2 1 + 1 ) = 2.5 \implies -(a+b+c+d) = - \left(-2 -\dfrac 12 - 1 + 1\right) = \boxed{2.5}

Clever use of identities!

James Wilson - 3 years, 4 months ago

Wonderful observation !

Arunava Das - 3 years, 4 months ago
Zee Ell
Feb 18, 2017

( x 2 + x 2 ) 3 + ( 2 x 2 x 1 ) 3 = 27 ( x 2 1 ) 3 (x^2 + x - 2)^3 + (2x^2 - x - 1)^3 = 27(x^2 - 1)^3

( x 1 ) 3 ( x + 2 ) 3 + ( x 1 ) 3 ( 2 x + 1 ) 3 = 27 ( x 1 ) 3 ( x + 1 ) 3 (x - 1)^3 (x + 2)^3 + (x - 1)^3 (2x + 1)^3 = 27 (x - 1)^3 (x + 1)^3

( x 1 ) 3 ( 27 ( x + 1 ) 3 ( x + 2 ) 3 ( 2 x + 1 ) 3 ) = 0 (x - 1)^3 ( 27(x + 1)^3 - (x + 2)^3 - (2x + 1)^3 ) = 0

( x 1 ) 3 ( 18 x 3 + 63 x 2 + 63 x + 18 ) = 0 (x - 1)^3 ( 18x^3 + 63x^2 + 63x + 18 ) = 0 .... (I)

18 x 3 + 63 x 2 + 63 x + 18 = 9 ( 2 x 3 + 7 x 2 + 7 x + 2 ) = 18x^3 + 63x^2 + 63x + 18 =9(2x^3 + 7x^2 + 7x + 2) =

= 9 ( x + 1 ) ( 2 x 2 + 5 x + 2 ) = 9 ( x + 1 ) ( 2 x + 1 ) ( x + 2 ) = 9(x+1)(2x^2 + 5x + 2) = 9(x+1)(2x + 1)(x + 2)

9 ( x 1 ) 3 ( x + 1 ) ( 2 x + 1 ) ( x + 2 ) = 0 9(x - 1)^3 (x+1)(2x + 1)(x + 2) = 0

Hence, the four distinct real roots do exist and they are:

a = 1 , b = -1 , c = -0.5 , d = -2 .

Therefore, our answer should be:

( a + b + c + d ) = ( 1 + ( 1 ) + ( 0.5 ) + ( 2 ) ) = 2.5 -(a + b + c + d) = - ( 1 + (-1) + (-0.5) + (-2) ) = \boxed {2.5}

I did it the same way as you, except I did just one step differently. The expression 27 ( x + 1 ) 3 ( x + 2 ) 2 ( 2 x + 1 ) 3 27(x+1)^3-(x+2)^2-(2x+1)^3 can be factored by changing 27 ( x + 1 ) 3 27(x+1)^3 to ( 3 x + 3 ) 3 (3x+3)^3 and then factoring ( 3 x + 3 ) 3 ( 2 x + 1 ) 3 (3x+3)^3-(2x+1)^3 as a difference of cubes. You end up with ( x + 2 ) ( ( 3 x + 3 ) 2 + ( 3 x + 3 ) ( 2 x + 1 ) + ( 2 x + 1 ) 2 ( x + 2 ) 2 ) = ( x + 2 ) ( 18 x 2 + 27 x + 9 ) = 9 ( x + 2 ) ( 2 x + 1 ) ( x + 1 ) (x+2)((3x+3)^2+(3x+3)(2x+1)+(2x+1)^2-(x+2)^2)=(x+2)(18x^2+27x+9)=9(x+2)(2x+1)(x+1) .

James Wilson - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...