( x 2 + x − 2 ) 3 + ( 2 x 2 − x − 1 ) 3 = 2 7 ( x 2 − 1 ) 3
If the four distinct real roots to the equation above are a , b , c and d , find − ( a + b + c + d ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Clever use of identities!
Wonderful observation !
( x 2 + x − 2 ) 3 + ( 2 x 2 − x − 1 ) 3 = 2 7 ( x 2 − 1 ) 3
( x − 1 ) 3 ( x + 2 ) 3 + ( x − 1 ) 3 ( 2 x + 1 ) 3 = 2 7 ( x − 1 ) 3 ( x + 1 ) 3
( x − 1 ) 3 ( 2 7 ( x + 1 ) 3 − ( x + 2 ) 3 − ( 2 x + 1 ) 3 ) = 0
( x − 1 ) 3 ( 1 8 x 3 + 6 3 x 2 + 6 3 x + 1 8 ) = 0 .... (I)
1 8 x 3 + 6 3 x 2 + 6 3 x + 1 8 = 9 ( 2 x 3 + 7 x 2 + 7 x + 2 ) =
= 9 ( x + 1 ) ( 2 x 2 + 5 x + 2 ) = 9 ( x + 1 ) ( 2 x + 1 ) ( x + 2 )
9 ( x − 1 ) 3 ( x + 1 ) ( 2 x + 1 ) ( x + 2 ) = 0
Hence, the four distinct real roots do exist and they are:
a = 1 , b = -1 , c = -0.5 , d = -2 .
Therefore, our answer should be:
− ( a + b + c + d ) = − ( 1 + ( − 1 ) + ( − 0 . 5 ) + ( − 2 ) ) = 2 . 5
I did it the same way as you, except I did just one step differently. The expression 2 7 ( x + 1 ) 3 − ( x + 2 ) 2 − ( 2 x + 1 ) 3 can be factored by changing 2 7 ( x + 1 ) 3 to ( 3 x + 3 ) 3 and then factoring ( 3 x + 3 ) 3 − ( 2 x + 1 ) 3 as a difference of cubes. You end up with ( x + 2 ) ( ( 3 x + 3 ) 2 + ( 3 x + 3 ) ( 2 x + 1 ) + ( 2 x + 1 ) 2 − ( x + 2 ) 2 ) = ( x + 2 ) ( 1 8 x 2 + 2 7 x + 9 ) = 9 ( x + 2 ) ( 2 x + 1 ) ( x + 1 ) .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Algebraic Identities
Let α = x 2 + x − 2 , β = 2 x 2 − x − 1 and γ = − 3 ( x 2 − 1 ) .
Then, we note that: α + β + γ = x 2 + x − 2 + 2 x 2 − x − 1 − 3 x 2 + 3 = 0
For α + β + γ = 0 ⟹ α 3 + β 3 + γ 3 = 3 α β γ . Since α 3 + β 3 + γ 3 = 0 ⟹ 3 α β γ = 0 . Therefore, we have:
α β γ ( x 2 + x − 2 ) ( 2 x 2 − x − 1 ) ( 3 − 3 x 2 ) ( x 2 + x − 2 ) ( 2 x 2 − x − 1 ) ( x 2 − 1 ) ( x + 2 ) ( x − 1 ) ( 2 x + 1 ) ( x − 1 ) ( x + 1 ) ( x − 1 ) ( x + 2 ) ( 2 x + 1 ) ( x + 1 ) ( x − 1 ) 3 ⟹ x = 0 = 0 = 0 = 0 = 0 = − 2 , − 2 1 , − 1 , 1
⟹ − ( a + b + c + d ) = − ( − 2 − 2 1 − 1 + 1 ) = 2 . 5