Cubes of a cubic

Algebra Level 4

Let the roots of the cubic equation x 3 3 x 2 + 5 x 7 { x }^{ 3 }-3{ x }^{ 2 }+5x-7 be α , β a n d γ \alpha, \beta \quad and \gamma . Then find α 3 + β 3 + γ 3 \alpha ^{ 3 }+\beta ^{ 3 }+\gamma ^{ 3 }

This problem is a part of my set The Best of Me


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Tom Zhou
Aug 4, 2014

Because α \alpha is a root, we have α 3 3 α 2 + 5 α 7 = 0 \alpha^3-3\alpha^2+5\alpha-7=0 or

α 3 = 3 α 2 5 α + 7 \alpha^3=3\alpha^2-5\alpha+7 , similarly we get

β 3 = 3 β 2 5 β + 7 \beta^3=3\beta^2-5\beta+7

γ 3 = 3 γ 2 5 γ + 7 \gamma^3=3\gamma^2-5\gamma+7

Adding these three equations, we get

α 3 + β 3 + γ 3 = 3 ( α 2 + β 2 + γ 2 ) 5 ( α + β + γ ) + 21 \alpha^3+\beta^3+\gamma^3=3(\alpha^2+\beta^2+\gamma^2)-5(\alpha+\beta+\gamma)+21

By Vieta, we have α + β + γ = 3 \alpha+\beta+\gamma=3 and α β + α γ + β γ = 5 \alpha\beta+\alpha\gamma+\beta\gamma=5 Writing the sum of squares as a linear combination of the elementary symmetric sums, we have the desired sum as

3 ( ( α + β + γ ) 2 2 ( α β + α γ + β γ ) ) 5 ( α + β + γ ) + 21 = 3 ( 3 2 2 ( 5 ) ) 5 ( 3 ) + 21 = 3 3((\alpha+\beta+\gamma)^2-2(\alpha\beta+\alpha\gamma+\beta\gamma))-5(\alpha+\beta+\gamma)+21=3(3^2-2(5))-5(3)+21=\boxed{3}

Amazing simplification! If only Brilliant allowed more than 1 upvote per person...

B.S.Bharath Sai Guhan - 6 years, 10 months ago

What's Vieta?

William Isoroku - 6 years, 10 months ago
Siddharth G
May 22, 2014

For any cubic equation
a x 3 + b x 2 + c x + d a{ x }^{ 3 }+b{ x }^{ 2 }+cx+d with roots alpha, beta & gamma
α + β + γ = b a \alpha+\beta+\gamma\quad=\quad-\frac { b }{ a }
α β γ = d a \alpha\beta\gamma \quad=\quad-\frac { d }{ a }
α β + β γ + γ α = c a \alpha\beta +\beta\gamma +\gamma\alpha \quad=\quad\frac { c }{ a }
We also have the identity
a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) { a }^{ 3 }+b^{ 3 }+c^{ 3 }-3abc=\quad(a+b+c)(a^{ 2 }{ +b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca)
a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( [ a + b + c ] 2 2 a b 2 b c 2 c a a b b c c a ) { a }^{ 3 }+b^{ 3 }+c^{ 3 }-3abc=\quad(a+b+c)([a{ +b }+{ c] }^{ 2 }-2ab-2bc-2ca-ab-bc-ca) a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( [ a + b + c ] 2 3 [ a b + b c + c a ] ) { a }^{ 3 }+b^{ 3 }+c^{ 3 }-3abc=\quad(a+b+c)([a{ +b }+{ c] }^{ 2 }-3[ab+bc+ca])



Substituting the values gives us
α 3 + β 3 + γ 3 3 ( d a ) = ( b a ) ( [ b a ] 2 3 [ c a ] ) { \alpha }^{ 3 }+\beta ^{ 3 }+\gamma ^{ 3 }-3(-\frac { d }{ a } )=\quad (-\frac { b }{ a } )([-\frac { b }{ a } ]^{ 2 }\quad-3[\frac{ c }{ a } ])
α 3 + β 3 + γ 3 = ( 3 ) ( 3 2 3 [ 5 ] ) + 3 ( 7 ) { \alpha }^{ 3 }+\beta ^{ 3 }+\gamma ^{ 3 }=(3)(3^{ 2 }-3[5])+3(7)
α 3 + β 3 + γ 3 = 3 ( 6 ) + 21 { \alpha }^{ 3 }+\beta ^{ 3 }+\gamma ^{ 3 }=3(-6)+21
α 3 + β 3 + γ 3 = 3 { \alpha }^{ 3 }+\beta ^{ 3 }+\gamma ^{ 3 }=3

Did the same way... :)

B.S.Bharath Sai Guhan - 6 years, 10 months ago

Used the same method.

Niranjan Khanderia - 5 years, 4 months ago
Akshat Sharda
Jan 22, 2016

x 3 3 x 2 + 5 x 7 = 0 x 3 = 3 x 2 5 x + 7 x 3 = ( 3 x 2 5 x + 7 ) = 3 x 2 5 x + 7 = 3 ( 1 ) 5 ( 3 ) + 21 = 3 \begin{aligned} x^3-3x^2+5x-7 & =0 \\ x^3 & =3x^2-5x+7 \\ \sum x^3 & = \sum(3x^2-5x+7) \\ & = 3\sum x^2- 5 \sum x +\sum 7 \\ & = 3(-1)-5(3)+21 \\ & = \boxed{3} \end{aligned}

Fox To-ong
Feb 6, 2015

thats same as mine,,,very nice

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...