Cubes to square root

Algebra Level 5

x + 2 y \large \sqrt{x}+2\sqrt{y} Let x , y x,y be non-negatives such that x 3 + y 3 1 x^3+y^3\leq 1 , find the maximum value of the expression above.

Submit your answer to 2 decimal places


This problem is part of the set: Straight outta AM-GM .


The answer is 2.70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
Mar 31, 2016

Without losing generality we assume that the maximum can be achieved when x 3 = a x^3=a , y 3 = b y^3=b , by AM-GM x 3 + 5 a 6 x 3 a 5 6 = 6 x a 5 6 x^3+5a\geq 6\sqrt[6]{x^3a^5}=6\sqrt{x}\sqrt[6]{a^5} y 3 + 5 b 6 y b 5 6 y^3+5b\geq 6\sqrt{y}\sqrt[6]{b^5} Now we need to have 2 a 5 6 = b 5 6 2\sqrt[6]{a^5}=\sqrt[6]{b^5} 1 + 5 ( a + b ) x 3 + y 3 + 5 ( a + b ) 6 x a 5 6 + 6 y b 5 6 \therefore 1+5(a+b)\geq x^3+y^3+5(a+b)\geq 6\sqrt{x}\sqrt[6]{a^5}+6\sqrt{y}\sqrt[6]{b^5} 1 + 5 ( 1 + 2 2 5 ) a 6 a 5 6 ( x + 2 y ) \Leftrightarrow 1+5(1+2\sqrt[5]{2})a\geq 6\sqrt[6]{a^5}(\sqrt{x}+2\sqrt{y}) x + 2 y 1 + 5 ( 1 + 2 2 5 ) a 6 a 5 6 = 1 6 a 5 6 + 5 6 ( 1 + 2 2 5 ) a 6 \Leftrightarrow \sqrt{x}+2\sqrt{y}\leq\frac{1+5(1+2\sqrt[5]{2})a}{6\sqrt[6]{a^5}}=\frac{1}{6\sqrt[6]{a^5}}+\frac{5}{6}(1+2\sqrt[5]{2})\sqrt[6]{a} Now, a , b a,b must satisfy { 2 2 5 a = b a + b = 1 \begin{cases}2\sqrt[5]{2}a=b\\a+b=1\end{cases} { a = 1 1 + 2 2 5 b = 2 2 5 1 + 2 2 5 \Leftrightarrow\begin{cases}a=\frac{1}{1+2\sqrt[5]{2}}\\b=\frac{\sqrt{2\sqrt[5]{2}}}{1+2\sqrt[5]{2}}\end{cases} x + 2 y 1 6 1 ( 1 + 2 2 5 ) 5 6 + 5 6 ( 1 + 2 2 5 ) 5 6 \therefore \sqrt{x}+2\sqrt{y}\leq \frac{1}{6\sqrt[6]{\frac{1}{(1+2\sqrt[5]{2})^5}}}+\frac{5}{6}\sqrt[6]{(1+2\sqrt[5]{2})^5} x + 2 y ( 1 + 2 2 5 ) 5 6 2.70 \Leftrightarrow \sqrt{x}+2\sqrt{y}\leq \sqrt[6]{(1+2\sqrt[5]{2})^5}\approx 2.70 The equality holds when ( x , y ) = ( 1 1 + 2 2 5 3 ; 2 2 5 1 + 2 2 5 3 ) (x,y)=\bigg(\frac{1}{\sqrt[3]{1+2\sqrt[5]{2}}};\sqrt[3]{\frac{2\sqrt[5]{2}}{1+2\sqrt[5]{2}}}\bigg)

Excuse me. My solution allowed sqrt(x)=2*(1-x^3)^(1/6). Solving gave x=cbrt(1/3). Plugging x in gave the value of 2.70199, off yours by 0.00077... Could you explain what is the flaw in mine and why the error is so small?

Sal Gard - 5 years, 1 month ago

i do it with the same way :)

Rajuh Pbbs - 5 years, 1 month ago

L e t x = 1 n a n d y = n , s i n c e w e w a n t m a x i m u m . S o f = x + 2 y = 1 n 6 + 2 n 6 . U s i n g t h i s i n t h e k e i s a n c a l c u l a t o r , n = 0 , . 1 , 11 W e g e t : Let~x=1-n~and~y=n,~~since~we~want~maximum.\\ So~\Huge f=\sqrt x+2*\sqrt y=\sqrt[6] {1-n}+2*\sqrt[6] {n}.\\ Using~this~in~the~keisan~calculator,\\ n=0,.1,11\\ We~get:-\\
n ..... ...... f
0 .... ...... 1
0.1 ...... 2.34518
0.2...... 2.49294
0.3 ...... 2.57866
0.4 ...... 2.63513
0.5 ...... 2.6727
0.6 ...... 2.69515
0.7 2.70276 \color{#D61F06}{0.7~~~~~~ 2.70276}
0.8 ...... 2.69171
0.9 ...... 2.64648
1 ........ 2
To refine the value, next I used,
n=.6,.02,21
I got the best as n=7.0 .....f=2.70276
Further n=.68,.001,20
I got the best at n=6.97 .........f= 2.702771453
S o x + 2 y = 2.702771453. So~\sqrt x+2*\sqrt y=\Large \color{#D61F06}{2.702771453}.



L e t x = 1 n a n d y = n , s i n c e w e w a n t m a x i m u m . S o f = x + 2 y = 1 n 6 + 2 n 6 . U s i n g t h i s i n t h e k e i s a n c a l c u l a t o r , n = 0 , . 1 , 11 W e g e t : Let~x=1-n~and~y=n,~~since~we~want~maximum.\\ So~\Huge f=\sqrt x+2*\sqrt y=\sqrt[6] {1-n}+2*\sqrt[6] {n}.\\ Using~this~in~the~keisan~calculator,\\ n=0,.1,11\\ We~get:-\\
n ..... ...... f
0 .... ...... 1
0.1 ...... 2.34518
0.2...... 2.49294
0.3 ...... 2.57866
0.4 ...... 2.63513
0.5 ...... 2.6727
0.6 ...... 2.69515
0.7 2.70276 \color{#D61F06}{0.7~~~~~~ 2.70276}
0.8 ...... 2.69171
0.9 ...... 2.64648
1 ........ 2
To refine the value, next I used,
n=.6,.02,21
I got the best as n=7.0 .....f=2.70276
Further n=.68,.001,20
I got the best at n=6.97 .........f= 2.702771453
S o x + 2 y = 2.702771453. So~\sqrt x+2*\sqrt y=\Large \color{#D61F06}{2.702771453}.

Niranjan Khanderia - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...