x + 2 y Let x , y be non-negatives such that x 3 + y 3 ≤ 1 , find the maximum value of the expression above.
Submit your answer to 2 decimal places
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Excuse me. My solution allowed sqrt(x)=2*(1-x^3)^(1/6). Solving gave x=cbrt(1/3). Plugging x in gave the value of 2.70199, off yours by 0.00077... Could you explain what is the flaw in mine and why the error is so small?
i do it with the same way :)
L
e
t
x
=
1
−
n
a
n
d
y
=
n
,
s
i
n
c
e
w
e
w
a
n
t
m
a
x
i
m
u
m
.
S
o
f
=
x
+
2
∗
y
=
6
1
−
n
+
2
∗
6
n
.
U
s
i
n
g
t
h
i
s
i
n
t
h
e
k
e
i
s
a
n
c
a
l
c
u
l
a
t
o
r
,
n
=
0
,
.
1
,
1
1
W
e
g
e
t
:
−
n ..... ...... f
0 .... ...... 1
0.1 ...... 2.34518
0.2...... 2.49294
0.3 ...... 2.57866
0.4 ...... 2.63513
0.5 ...... 2.6727
0.6 ...... 2.69515
0
.
7
2
.
7
0
2
7
6
0.8 ...... 2.69171
0.9 ...... 2.64648
1 ........ 2
To refine the value,
next I used,
n=.6,.02,21
I got the best as n=7.0 .....f=2.70276
Further n=.68,.001,20
I got the best at n=6.97 .........f= 2.702771453
S
o
x
+
2
∗
y
=
2
.
7
0
2
7
7
1
4
5
3
.
L
e
t
x
=
1
−
n
a
n
d
y
=
n
,
s
i
n
c
e
w
e
w
a
n
t
m
a
x
i
m
u
m
.
S
o
f
=
x
+
2
∗
y
=
6
1
−
n
+
2
∗
6
n
.
U
s
i
n
g
t
h
i
s
i
n
t
h
e
k
e
i
s
a
n
c
a
l
c
u
l
a
t
o
r
,
n
=
0
,
.
1
,
1
1
W
e
g
e
t
:
−
n ..... ...... f
0 .... ...... 1
0.1 ...... 2.34518
0.2...... 2.49294
0.3 ...... 2.57866
0.4 ...... 2.63513
0.5 ...... 2.6727
0.6 ...... 2.69515
0
.
7
2
.
7
0
2
7
6
0.8 ...... 2.69171
0.9 ...... 2.64648
1 ........ 2
To refine the value,
next I used,
n=.6,.02,21
I got the best as n=7.0 .....f=2.70276
Further n=.68,.001,20
I got the best at n=6.97 .........f= 2.702771453
S
o
x
+
2
∗
y
=
2
.
7
0
2
7
7
1
4
5
3
.
Problem Loading...
Note Loading...
Set Loading...
Without losing generality we assume that the maximum can be achieved when x 3 = a , y 3 = b , by AM-GM x 3 + 5 a ≥ 6 6 x 3 a 5 = 6 x 6 a 5 y 3 + 5 b ≥ 6 y 6 b 5 Now we need to have 2 6 a 5 = 6 b 5 ∴ 1 + 5 ( a + b ) ≥ x 3 + y 3 + 5 ( a + b ) ≥ 6 x 6 a 5 + 6 y 6 b 5 ⇔ 1 + 5 ( 1 + 2 5 2 ) a ≥ 6 6 a 5 ( x + 2 y ) ⇔ x + 2 y ≤ 6 6 a 5 1 + 5 ( 1 + 2 5 2 ) a = 6 6 a 5 1 + 6 5 ( 1 + 2 5 2 ) 6 a Now, a , b must satisfy { 2 5 2 a = b a + b = 1 ⇔ ⎩ ⎨ ⎧ a = 1 + 2 5 2 1 b = 1 + 2 5 2 2 5 2 ∴ x + 2 y ≤ 6 6 ( 1 + 2 5 2 ) 5 1 1 + 6 5 6 ( 1 + 2 5 2 ) 5 ⇔ x + 2 y ≤ 6 ( 1 + 2 5 2 ) 5 ≈ 2 . 7 0 The equality holds when ( x , y ) = ( 3 1 + 2 5 2 1 ; 3 1 + 2 5 2 2 5 2 )