Cubic Equation

Algebra Level 3

x^{3}=a+1 and x+(b/x)=a then x equals

(ab+a+1)/(a^{2}-b) (ab-a-1)/(a^{2}-b) a(b+1)/(a^{2}-b) (ab+1)/(a^{2}-b)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aneesh Kundu
Jun 7, 2014

x 2 + b 2 x 2 + 2 b = a 2 x^2 + \dfrac{b^2}{x^2} + 2b = a^2 x 3 + ( b x × b ) + 2 b x = a 2 x \Rightarrow x^3 +\left( \dfrac{b}{x} \times b \right ) + 2bx = a^2x Substitute x 3 = a + 1 x^3=a+1 and b x = a x \dfrac{b}{x}=a-x ( a + 1 ) + ( a x ) b + 2 b x = a 2 x \Rightarrow (a+1) + (a-x)b + 2bx = a^2x ( a + 1 ) + a b b x + 2 b x = a 2 x \Rightarrow (a+1)+ab-bx+2bx=a^2x a b + a + 1 = x ( a 2 2 b + b ) \Rightarrow ab+a+1=x(a^2 - 2b + b) x = ( a b + a + 1 ) a 2 b \Rightarrow \boxed {x=\dfrac{(ab + a +1)}{a^2 - b}}

Shikhar Jaiswal
Feb 24, 2014

put a=26 x=3 which means b=69.....only option A satisfies the values...................................................................................................................but i still dont have any idea of the genuine method

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...