Cubic equation's determinant

Algebra Level 4

If α , β & γ \alpha , \beta \text{ \& } \gamma are the roots of the equation

x 3 + a x 2 + b = 0 x^3 + ax^2 + b = 0

find the value of α β γ β γ α γ α β \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \\ \end{vmatrix} .

Try my set for more problems.
b 2 b^2 a 3 a^3 b 3 b^3 b b a 2 a^2 a a

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We shall first simplify the determinant and then apply Vieta's Formulas to attain the answer

Let Δ = α β γ β γ α γ α β \Delta = \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \\ \end{vmatrix}

Using the elementary transformations

  • R 1 R 1 + R 2 + R 3 R_1 \to R_1 + R_2 + R_3

  • C 1 C 1 C 2 C_1 \to C_1 - C_2

  • C 2 C 2 C 3 C_2 \to C_2 - C_3 ,

and expanding through R 1 R_1

we get

Δ = ( α ) × ( α β α 2 ) \displaystyle \Delta = (\sum\alpha) \times (\sum\alpha\beta - \sum \alpha^2)

Δ = ( α ) × ( 3 α β ( α ) 2 ) \displaystyle \Delta = (\sum\alpha) \times (3\sum\alpha\beta - (\sum\alpha)^2)

Using Vieta's Formulas:

α = a \displaystyle \sum \alpha = -a

α β = 0 \displaystyle \sum \alpha\beta = 0

Hence:

Δ = a × a 2 = a 3 \Delta = -a \times - a^2 = \color{#D61F06}{\boxed{a^3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...