Cubic factorizations

Algebra Level 2

If X = 9 + 80 3 + 9 80 3 + 1 X = \sqrt[3]{9+\sqrt{80}} + \sqrt[3]{9-\sqrt{80}} + 1 , what is the value of X 2 ( X 3 ) X^2(X-3) ?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Qweros Bistoros
Sep 12, 2020

let a = 9 + 80 3 a=\sqrt[3]{9+\sqrt{80}} , b = 9 80 3 b=\sqrt[3]{9-\sqrt{80}}

then a b = ( 9 + 80 ) ( 9 80 ) 3 = 81 80 3 = 1 ab=\sqrt[3]{(9+\sqrt{80})(9-\sqrt{80})} = \sqrt[3]{81-80} = 1 , and x = a + b + 1 x = a + b +1

x 2 ( x 3 ) = x 3 3 x 2 + 3 x 1 3 x + 1 = ( x 1 ) 3 3 x + 1 = ( a + b ) 3 3 ( a + b ) 2 = a 3 + 3 a b ( a + b ) + b 3 3 ( a + b ) 2 = a 3 + b 3 2 = 9 + 80 + 9 80 2 = 16 x^2(x-3) = x^3-3x^2+3x-1-3x+1 = (x-1)^3-3x+1 = (a+b)^3-3(a+b) - 2 = a^3+3ab(a+b)+b^3-3(a+b)-2 = a^3+b^3-2= 9+\sqrt{80}+9-\sqrt{80}-2 = 16

Chew-Seong Cheong
Sep 12, 2020

Let 9 + 80 3 = a \sqrt[3]{9+\sqrt{80}} = a and 9 + 80 3 = b \sqrt[3]{9+\sqrt{80}} = b . Then

( a + b ) ( a 2 a b + b 2 ) = a 3 + b 3 Note that a b = ( 9 + 80 ) ( 9 80 ) = 81 80 = 1 ( a + b ) ( a 2 + b 2 1 ) = 9 + 80 + 9 80 ( a + b ) ( ( a + b ) 2 2 a b 1 ) = 18 ( a + b ) ( ( a + b ) 2 3 ) = 18 ( a + b ) 3 3 ( a + b ) = 18 a + b = 3 \begin{aligned} (a+b)(a^2 - \blue{ab} + b^2) & = a^3 + b^3 & \small \blue{\text{Note that }ab = \sqrt{(9+\sqrt{80})(9-\sqrt{80})}=\sqrt{81-80}=1} \\ (a+b)(\red{a^2 + b^2} - \blue 1) & = 9+\sqrt{80} + 9 - \sqrt{80} \\ (a+b)(\red{(a+b)^2 - 2ab} - 1) & = 18 \\ (a+b)((a+b)^2 - 3) & = 18 \\ (a+b)^3 - 3(a+b) & = 18 \\ \implies a + b & = 3 \end{aligned}

Therefore, X = a + b + 1 = 4 X 2 ( X 3 ) = 4 2 ( 4 3 ) = 16 X=a+b+1 = 4 \implies X^2(X-3) = 4^2(4-3) = \boxed{16} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...