Cubic function

Algebra Level 3

A cubic function is given by:

f ( x ) = a x 3 + b x 2 + c x + d f(x)=ax^3+bx^2+cx+d

where a , b , c , d R a,b,c,d\in\mathbb{R} and a 0 a\ne 0 . Some conditions for a , b , c , d a,b,c,d are given as

9 a b c 27 a 2 d 2 b 3 a 3 = 65 \dfrac{9abc-27a^2d-2b^3}{a^3}=65

3 a c b 2 a 2 = 4 \dfrac{3ac-b^2}{a^2}=-4

The cubic function f ( x ) = 0 f(x) =0 has one real root x 1 x_1 . Find the value of x 1 + b 3 a x_1+\dfrac{b}{3a} .


3 5 \dfrac{3}{5} - 3 5 \dfrac{3}{5} - 5 3 \dfrac{5}{3} 5 3 \dfrac{5}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Skanda Prasad
Nov 17, 2017

From Cardano's method , we have

x 1 x_1 (the real root of the cubic equation) = S + T b 3 a S+T-\frac{b}{3a}

x 1 + b 3 a = S + T \implies x_1+\frac{b}{3a}=S+T


We know that S = ( R + Q 3 + R 2 ) 1 3 S=(R+\sqrt{Q^3+R^2})^{\frac{1}{3}} and T = ( R Q 3 + R 2 ) 1 3 T=(R-\sqrt{Q^3+R^2})^{\frac{1}{3}}

Where R = 9 a b c 27 a 2 d 2 b 3 54 a 3 R=\dfrac{9abc-27a^2d-2b^3}{54a^3} and Q = 3 a c b 2 9 a 2 Q=\dfrac{3ac-b^2}{9a^2}


( x 1 + b 3 a ) 3 = ( ( R + Q 3 + R 2 ) 1 3 + ( R Q 3 + R 2 ) 1 3 ) 3 (x_1+\frac{b}{3a})^3=((R+\sqrt{Q^3+R^2})^{\frac{1}{3}}+(R-\sqrt{Q^3+R^2})^{\frac{1}{3}})^3


We have ( m + n ) 3 = m 3 + n 3 + 3 m n ( m + n ) (m+n)^3=m^3+n^3+3mn(m+n)

Hence, using the above identity and expanding we obtain the following expression.

( x 1 + b 3 a ) 3 = 2 R 3 Q ( x 1 + b 3 a ) (x_1+\frac{b}{3a})^3=2R-3Q(x_1+\frac{b}{3a})

From given data, we deduce that R = 65 54 R=\dfrac{65}{54} and Q = 4 9 Q=\dfrac{-4}{9}

Now, we can easily verify the options, fetching us the answer ( x 1 + b 3 a ) = 5 3 (x_1+\frac{b}{3a})=\boxed{\dfrac{5}{3}}

Rajath Rao
Nov 22, 2017

From cardano's formula ,we have,

x 1 = S + T b 3 a x_1=S+T-\frac{b}{3a} ,

Where x 1 x_1 is a real root.

x 1 + b 3 a = S + T \implies x_1+\frac{b}{3a}=S+T


We know that from cardano's formula, S = ( R + Q 3 + R 2 ) 1 3 S=(R+\sqrt{Q^3+R^2})^{\frac{1}{3}} and T = ( R Q 3 + R 2 ) 1 3 T=(R-\sqrt{Q^3+R^2})^{\frac{1}{3}}

Where R = 9 a b c 27 a 2 d 2 b 3 54 a 3 R=\dfrac{9abc-27a^2d-2b^3}{54a^3} and Q = 3 a c b 2 9 a 2 Q=\dfrac{3ac-b^2}{9a^2}


By given data, R = 65 54 R=\dfrac{65}{54} and Q = 4 9 Q=\dfrac{-4}{9}

substituting R and Q to get S and T,

S = 4 3 S=\dfrac{4}{3} and T = 1 3 T=\dfrac{1}{3}


x 1 + b 3 a = 4 3 + 1 3 \implies x_1+\frac{b}{3a}=\frac{4}{3}+\frac{1}{3}

x 1 + b 3 a = 5 3 \implies \boxed{x_1+\dfrac{b}{3a}=\dfrac{5}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...