Cubic Limit

Calculus Level pending

lim n 1 n 4 j = 0 2 n 1 j 3 = ? \large\lim \limits_{n\to \infty }\dfrac{1}{n^4}\sum \limits^{2n - 1}_{j=0} j^3 = \ ?

1 8 4 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 29, 2017

L = lim n 1 n 4 j = 0 2 n 1 j 3 = lim n 1 n 4 ( ( 2 n 1 ) ( 2 n ) 2 ) 2 = lim n 4 n 2 ( 4 n 2 + 4 n + 1 ) 4 n 4 = lim n 4 n 2 + 4 n + 1 ) n 2 = lim n 4 + 4 n + 1 n 2 = 4 \begin{aligned} L & = \lim_{n \to \infty} \frac 1{n^4} \sum_{j=0}^{2n-1} j^3 \\ & = \lim_{n \to \infty} \frac 1{n^4} \left( \frac {(2n-1)(2n)}2 \right) ^2 \\ & = \lim_{n \to \infty} \frac {4n^2(4n^2+4n+1)}{4n^4} \\ & = \lim_{n \to \infty} \frac {4n^2+4n+1)}{n^2} \\ & = \lim_{n \to \infty} 4 + \frac 4n + \frac 1{n^2} \\ & = \boxed{4} \end{aligned}

Nice, did the same only struggled because a accidentally forgot the square at first...

Peter van der Linden - 4 years, 2 months ago

Sir you made a mistake here

( 2 n 1 ) 2 = 4 n 2 4 n + 1 {\left( 2n-1 \right)}^2 = 4n^2 - 4n + 1

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...