Cubic summation

Algebra Level 4

n = 0 123456789 3 n 2 + 9 n + 7 ( n 2 + 3 n + 2 ) 3 \large \sum_{n=0}^{123456789} \dfrac{3n^2+9n+7}{(n^2+3n+2)^3}

Given that the summation above is equal to A B \dfrac AB , where A A and B B are coprime positive integers, find B A B-A .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 10, 2016

n = 0 123456789 3 n 2 + 9 n + 7 ( n 2 + 3 n + 2 ) 3 = n = 0 123456789 3 ( n 2 + 3 n + 2 ) + 1 ( n 2 + 3 n + 2 ) 3 = n = 0 123456789 ( 3 ( n 2 + 3 n + 2 ) 2 + 1 ( n 2 + 3 n + 2 ) 3 ) = n = 0 123456789 ( 3 ( n + 1 ) 2 ( n + 2 ) 2 + ( 1 ( n + 1 ) ( n + 2 ) ) 3 ) = n = 0 123456789 ( 3 ( n + 1 ) 2 ( n + 2 ) 2 + ( 1 n + 1 1 n + 2 ) 3 ) = n = 0 123456789 ( 3 ( n + 1 ) 2 ( n + 2 ) 2 + 1 ( n + 1 ) 3 3 ( n + 1 ) 2 ( n + 2 ) + 3 ( n + 1 ) ( n + 2 ) 2 1 ( n + 2 ) 3 ) = n = 0 123456789 ( 3 ( n + 1 ) ( n + 2 ) ( 1 ( n + 1 ) ( n + 2 ) 1 n + 1 + 1 n + 2 ) + 1 ( n + 1 ) 3 1 ( n + 2 ) 3 ) = n = 0 123456789 ( 3 ( n + 1 ) ( n + 2 ) ( 1 n + 1 1 n + 2 1 n + 1 + 1 n + 2 ) + 1 ( n + 1 ) 3 1 ( n + 2 ) 3 ) = n = 0 123456789 ( 1 ( n + 1 ) 3 1 ( n + 2 ) 3 ) = 1 1 12345679 1 3 = 12345679 1 3 1 12345679 1 3 \begin{aligned} \sum_{n=0}^{123456789} \frac{3n^2+9n+7}{(n^2+3n+2)^3} & = \sum_{n=0}^{123456789} \frac{3(n^2+3n+2)+1}{(n^2+3n+2)^3} \\ & = \sum_{n=0}^{123456789} \left( \frac{3}{(n^2+3n+2)^2} + \frac{1}{(n^2+3n+2)^3} \right) \\ & = \sum_{n=0}^{123456789} \left( \frac{3}{(n+1)^2(n+2)^2} + \left( \frac{1}{(n+1)(n+2)} \right)^3 \right) \\ & = \sum_{n=0}^{123456789} \left( \frac{3}{(n+1)^2(n+2)^2} + \left( \frac{1}{n+1} - \frac{1}{n+2} \right)^3 \right) \\ & = \sum_{n=0}^{123456789} \left( \frac{3}{(n+1)^2(n+2)^2} + \frac{1}{(n+1)^3} - \frac{3}{(n+1)^2(n+2)} + \frac{3}{(n+1)(n+2)^2} - \frac{1}{(n+2)^3} \right) \\ & = \sum_{n=0}^{123456789} \left( \frac{3}{(n+1)(n+2)} \left(\frac{1}{(n+1)(n+2)} - \frac{1}{n+1} + \frac{1}{n+2} \right) + \frac{1}{(n+1)^3} - \frac{1}{(n+2)^3} \right) \\ & = \sum_{n=0}^{123456789} \left( \frac{3}{(n+1)(n+2)} \left(\frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+1} + \frac{1}{n+2} \right) + \frac{1}{(n+1)^3} - \frac{1}{(n+2)^3} \right) \\ & = \sum_{n=0}^{123456789} \left(\frac{1}{(n+1)^3} - \frac{1}{(n+2)^3} \right) \\ & = 1 - \frac{1}{123456791^3} = \frac{123456791^3-1}{123456791^3} \end{aligned}

B A = 1 \Rightarrow B - A = \boxed{1}

Nice solution! Though it would be easier if you had directly noticed that 3n^2 + 9n + 7 = (n+2)^3 - (n+1)^3

Shreyash Rai - 5 years, 5 months ago

Log in to reply

Bhai ek to solve kiya aur galti se discuss solution kar diya.

Department 8 - 5 years, 5 months ago

Log in to reply

No big deal. Mere saath bahut baar hua hai

Shreyash Rai - 5 years, 5 months ago
Kay Xspre
Jan 11, 2016

Notice that n 2 + 3 n + 2 = ( n + 1 ) ( n + 2 ) n^2+3n+2 = (n+1)(n+2) , and ( n + 2 ) 3 ( n + 1 ) 3 = 3 n 2 + 9 n + 7 (n+2)^3-(n+1)^3 = 3n^2+9n+7 , then you can split the faction into ( n + 2 ) 3 ( n + 1 ) 3 ( n + 1 ) 3 ( n + 2 ) 3 = 1 ( n + 1 ) 3 1 ( n + 2 ) 3 \frac{(n+2)^3-(n+1)^3}{(n+1)^3(n+2)^3} =\frac{1}{(n+1)^3}-\frac{1}{(n+2)^3} Here, when we put sigma in, it would be in the form of ( 1 1 8 ) + ( 1 8 1 27 ) + + ( 1 12345679 0 3 1 12345679 1 3 ) = 1 1 12345679 1 3 (1-\frac{1}{8})+(\frac{1}{8}-\frac{1}{27})+\dots+(\frac{1}{123456790^3}-\frac{1}{123456791^3}) = 1-\frac{1}{123456791^3}

Exactly what I wanted! Nice short and crisp solution.

Shreyash Rai - 5 years, 5 months ago
Veeresh Pandey
May 27, 2019

use 3 n 2 + 9 n + 7 = ( n + 2 ) 3 ( n + 1 ) 3 3n^2+9n+7=(n+2)^3-(n+1)^3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...