n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( n 2 + 3 n + 2 ) 3 3 n 2 + 9 n + 7
Given that the summation above is equal to B A , where A and B are coprime positive integers, find B − A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution! Though it would be easier if you had directly noticed that 3n^2 + 9n + 7 = (n+2)^3 - (n+1)^3
Log in to reply
Bhai ek to solve kiya aur galti se discuss solution kar diya.
Notice that n 2 + 3 n + 2 = ( n + 1 ) ( n + 2 ) , and ( n + 2 ) 3 − ( n + 1 ) 3 = 3 n 2 + 9 n + 7 , then you can split the faction into ( n + 1 ) 3 ( n + 2 ) 3 ( n + 2 ) 3 − ( n + 1 ) 3 = ( n + 1 ) 3 1 − ( n + 2 ) 3 1 Here, when we put sigma in, it would be in the form of ( 1 − 8 1 ) + ( 8 1 − 2 7 1 ) + ⋯ + ( 1 2 3 4 5 6 7 9 0 3 1 − 1 2 3 4 5 6 7 9 1 3 1 ) = 1 − 1 2 3 4 5 6 7 9 1 3 1
Exactly what I wanted! Nice short and crisp solution.
use 3 n 2 + 9 n + 7 = ( n + 2 ) 3 − ( n + 1 ) 3
Problem Loading...
Note Loading...
Set Loading...
n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( n 2 + 3 n + 2 ) 3 3 n 2 + 9 n + 7 = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( n 2 + 3 n + 2 ) 3 3 ( n 2 + 3 n + 2 ) + 1 = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( ( n 2 + 3 n + 2 ) 2 3 + ( n 2 + 3 n + 2 ) 3 1 ) = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( ( n + 1 ) 2 ( n + 2 ) 2 3 + ( ( n + 1 ) ( n + 2 ) 1 ) 3 ) = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( ( n + 1 ) 2 ( n + 2 ) 2 3 + ( n + 1 1 − n + 2 1 ) 3 ) = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( ( n + 1 ) 2 ( n + 2 ) 2 3 + ( n + 1 ) 3 1 − ( n + 1 ) 2 ( n + 2 ) 3 + ( n + 1 ) ( n + 2 ) 2 3 − ( n + 2 ) 3 1 ) = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( ( n + 1 ) ( n + 2 ) 3 ( ( n + 1 ) ( n + 2 ) 1 − n + 1 1 + n + 2 1 ) + ( n + 1 ) 3 1 − ( n + 2 ) 3 1 ) = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( ( n + 1 ) ( n + 2 ) 3 ( n + 1 1 − n + 2 1 − n + 1 1 + n + 2 1 ) + ( n + 1 ) 3 1 − ( n + 2 ) 3 1 ) = n = 0 ∑ 1 2 3 4 5 6 7 8 9 ( ( n + 1 ) 3 1 − ( n + 2 ) 3 1 ) = 1 − 1 2 3 4 5 6 7 9 1 3 1 = 1 2 3 4 5 6 7 9 1 3 1 2 3 4 5 6 7 9 1 3 − 1
⇒ B − A = 1