Cunning Complex 1

Algebra Level 5

z 2 z 3 + 8 z 3 z 1 + 27 z 1 z 2 \large \left| { z }_{ 2 }{ z }_{ 3 }+{ 8z }_{ 3 }{ z }_{ 1 }+{ 27 }z_{ 1 }{ z }_{ 2 } \right|

If z 1 = 1 , z 2 = 2 , z 3 = 3 \left| { z }_{ 1 } \right| =1,\left| { z }_{ 2 } \right| =2,\left| { z }_{ 3 } \right| =3 and z 1 + 2 z 2 + 3 z 3 = 6 \left| { z }_{ 1 }+{ 2z }_{ 2 }+{ 3z }_{ 3 } \right| =6 .Find the value of the expression above.

To view set click here .


The answer is 36.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Dinesh Chavan
Mar 15, 2015

The answer is simple. See that z 1 = 1 , z 1 z 1 = 1 \left| { z }_{ 1 } \right| =1,\Rightarrow {z}_{1}\overline{z_{1}}=1 z 2 = 2 , z 2 z 2 = 4 \left| { z }_{ 2 } \right| =2,\Rightarrow {z}_{2}\overline{z_{2}}=4 z 3 = 3 , z 3 z 3 = 9 \left| { z }_{ 3 } \right| =3,\Rightarrow {z}_{3}\overline{z_{3}}=9 We have to find z 2 z 3 + 8 z 3 z 1 + 27 z 1 z 2 \left| { z }_{ 2 }{ z }_{ 3 }+{ 8z }_{ 3 }{ z }_{ 1 }+{ 27 }z_{ 1 }{ z }_{ 2 } \right| 1 ( 1 ) 2 z 2 z 3 + ( 2 ) ( 2 ) 2 z 3 z 1 + ( 3 ) ( 3 ) 2 z 1 z 2 \Rightarrow \left| 1(1)^2{ z }_{ 2 }{ z }_{ 3 }+{ (2)(2)^2z }_{ 3 }{ z }_{ 1 }+{ (3)(3)^2 }z_{ 1 }{ z }_{ 2 } \right| 1 ( z 1 z 1 ) z 2 z 3 + ( 2 ) ( z 2 z 2 ) z 3 z 1 + ( 3 ) ( z 3 z 3 ) z 1 z 2 \Rightarrow \left| 1({z}_{1}\overline{z_{1}}){ z }_{ 2 }{ z }_{ 3 }+{ (2)({z}_{2}\overline{z_{2}})z }_{ 3 }{ z }_{ 1 }+{ (3)({z}_{3}\overline{z_{3}}) }z_{ 1 }{ z }_{ 2 } \right| z 1 z 2 z 3 z 1 + 2 z 2 + 3 z 3 \Rightarrow \left| z_1 \right| \left|z_2 \right| \left|z_3 \right| \left| {\overline {z }_{ 1 }}+{\overline {2z }_{ 2 }}+{\overline{ 3z }_{ 3 }} \right| 1 × 2 × 3 × 6 \Rightarrow 1 \times 2 \times 3 \times 6 = 36 =36

whoa!! man u also overlooked the above mentioned mistake. and more amazing thing that u still answered it correctly. Have u solved it before?? @Dinesh Chavan

Tanishq Varshney - 6 years, 3 months ago

Log in to reply

Yep. I had solved it. So i didnt see that mistake of z 1 z 3 z_1z_3 . Sorry.

Dinesh Chavan - 6 years, 3 months ago

Log in to reply

Sir I have corrected the problem. Sorry for the inconvenience

Utkarsh Bansal - 6 years, 2 months ago

Sir I have corrected the problem. Sorry for the inconvenience

Utkarsh Bansal - 6 years, 2 months ago
Ishan Dixit
Apr 20, 2017

Again doesn't deserve level 5

Ali Ismaeel
Jun 5, 2015

We look for real numbers z 1 , z 2 , z 3 z_1 , z_2,z_3 which satisfy the conditions , we easily see that z 1 = 1 , z 2 = 2 , z 3 = 3 z_1 = 1 , z_2 = -2 , z_3 = 3 is good (not the only solution) . then we calculate the answer directly.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...