Cunning Complex 5

Algebra Level 5

Solve k = 1 6 ( sin 2 π k 7 i cos 2 π k 7 ) \sum _{ k=1 }^{ 6 }{ \left( \sin { \frac { 2\pi k }{ 7 } -i\cos { \frac { 2\pi k }{ 7 } } } \right) }

To view set click here

i 0 -i -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Mar 18, 2015

Given, k = 1 6 ( sin 2 π k 7 i cos 2 π k 7 ) \sum _{ k=1 }^{ 6 }{ \left( \sin { \frac { 2\pi k }{ 7 } -i\cos { \frac { 2\pi k }{ 7 } } } \right) }

i k = 1 6 ( c o s 2 π k 7 + i s i n 2 π k 7 ) = i k = 1 6 ( e 2 π k 7 ) \Rightarrow -i\sum _{ k=1 }^{ 6 }{ \left( cos\frac { 2\pi k }{ 7 } +isin\frac { 2\pi k }{ 7 } \right) } =-i\sum _{ k=1 }^{ 6 }{ \left( { e }^{ \frac { 2\pi k }{ 7 } } \right) } i k = 1 6 ( α k ) , w h e r e α = e 2 π 7 \Rightarrow -i\sum _{ k=1 }^{ 6 }{ \left( \alpha ^{ k } \right) } \quad \quad \quad ,where\quad \alpha ={ e }^{ \frac { 2\pi }{ 7 } } = i α ( α 6 1 ) ( α 1 ) = i ( α 7 α ) ( α 1 ) =-i\frac { \alpha ({ \alpha }^{ 6 }-1) }{ (\alpha -1) } =-i\frac { ({ \alpha }^{ 7 }-\alpha ) }{ (\alpha -1) } = i ( 1 α ) ( α 1 ) α 7 = e 2 π × 7 7 = e 2 π = 1 =-i\frac { (1-\alpha ) }{ (\alpha -1) } \quad \quad \quad \quad \because { \alpha }^{ 7 }={ e }^{ \frac { 2\pi \times 7 }{ 7 } }={ e }^{ 2\pi }=1 = i =\boxed{i}

Thanks for the solution. Nice one

Utkarsh Bansal - 6 years, 2 months ago

Log in to reply

@Utkarsh Bansal Thanks:)

Anandhu Raj - 6 years, 2 months ago

I don't know why each line in my solution is not centralized.

Anandhu Raj - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...