Curly

Calculus Level 3

Consider the vector field

F ( x , y , z ) = x sin z i + y cos x j + z tan y k \mathbf{F}(x, y, z) = x\sin{z} \, \, \mathbf{i} + y\cos{x} \, \, \mathbf{j} + z\tan{y} \, \, \mathbf{k} .

The curl of this vector field at the point ( 7 π 6 , π 6 , 2 π 3 ) ( \frac{7\pi}{6}, \frac{\pi}{6}, \frac{2\pi}{3}) can be expressed in the form a i + b j + c k a \, \mathbf{i} + b \, \mathbf{j} + c \, \mathbf{k} where a a , b b and c c are real numbers. a + b + c a + b + c can be expressed in the form d e π \frac{d}{e} \pi where d d and e e are coprime positive integers. What is d + e d + e ?

If you are unfamiliar with the concept of curl you may wish to read the following webpage.

Curl Explanation


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tunk-Fey Ariawan
Feb 1, 2014

The curl of F \mathbf{F} at the point ( 7 π 6 , π 6 2 π 3 ) \left(\frac{7\pi}{6},\frac{\pi}{6}\,\frac{2\pi}{3}\right) is × F = i j k x y z x sin z y cos x z tan y = ( y ( z tan y ) z ( y cos x ) ) i ( x ( z tan y ) z ( x sin z ) ) j + ( x ( y cos x ) y ( x sin z ) ) k = ( z sec 2 y 0 ) i ( 0 x cos z ) j + ( y sin x 0 ) k = z sec 2 y i + x cos z j y sin x k = 8 9 π i 7 12 π j + 1 12 π k \begin{aligned} \nabla\times\mathbf{F} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} &\mathbf{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ x\, \sin z & y\,\cos x & z\,\tan y \end{vmatrix}\\ &=\left(\frac{\partial}{\partial y}(z\,\tan y)-\frac{\partial}{\partial z}(y\,\cos x)\right)\mathbf{i}-\left(\frac{\partial}{\partial x}(z\,\tan y)-\frac{\partial}{\partial z}(x\, \sin z)\right)\mathbf{j}+\left(\frac{\partial}{\partial x}(y\,\cos x)-\frac{\partial}{\partial y}(x\, \sin z)\right)\mathbf{k}\\ &=(z\,\sec^2y-0)\,\mathbf{i}-(0-x\,\cos z)\,\mathbf{j}+(-y\,\sin x-0)\,\mathbf{k}\\ &= z\,\sec^2y\;\mathbf{i}+x\,\cos z\;\mathbf{j}-y\,\sin x\;\mathbf{k}\\ &= \frac{8}{9}\pi\;\mathbf{i} - \frac{7}{12}\pi\;\mathbf{j} + \frac{1}{12}\pi\;\mathbf{k} \end{aligned} Thus, a + b + c = 8 9 π 7 12 π + 1 12 π = 7 18 π a+b+c= \frac{8}{9}\pi- \frac{7}{12}\pi+ \frac{1}{12}\pi=\frac{7}{18}\pi\; and d + e = 7 + 18 = 25 \;d+e=7+18=\boxed{25} . # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

Ricky Escobar
Dec 20, 2013

The curl of F \mathbf{F} is $$\mathrm{curl} \, \mathbf{F} = \nabla \times \mathbf{F}= \left|\begin{array}{ccc} \mathbf{i}& \mathbf{j}& \mathbf{k}\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}& \frac{\partial}{\partial z}\\ x \sin z& y \cos x& z \tan y \end{array} \right|$$ $$=\langle z \sec^2 y, x \cos z, -y \sin x \rangle.$$ At ( 7 π 6 , π 6 , 2 π 3 ) \left( \frac{7\pi}{6},\frac{\pi}{6},\frac{2\pi}{3} \right) , we get $$\langle \frac{8\pi}{9},-\frac{7\pi}{12},\frac{\pi}{12} \rangle.$$ So a + b + c = 7 π 18 a+b+c=\frac{7\pi}{18} , and d + e = 25 d+e=\boxed{25} .

can u explain hw did u get these 3 values of a.b &c

Vipin Baisla - 7 years, 5 months ago

Log in to reply

We got that the curl is $$\langle z \sec^2y, x \cos z, -y \sin x \rangle.$$ We are interested in the point ( x , y , z ) = ( 7 π 6 , π 6 , 2 π 3 ) , \left( x,y,z \right)=\left( \frac{7\pi}{6},\frac{\pi}{6},\frac{2\pi}{3} \right), so everywhere we see x x in the expression for the curl, we plug in 7 π 6 \frac{7\pi}{6} ; every time we see a y y , we plug in π 6 \frac{\pi}{6} ; and everywhere we see z z , we plug in 2 π 3 \frac{2\pi}{3} . So we get $$\langle \frac{2\pi}{3} \sec^2\frac{\pi}{6}, \frac{7\pi}{6} \cos \frac{2\pi}{3}, -\frac{\pi}{6} \sin \frac{7\pi}{6} \rangle,$$ which simplifies to $$\langle \frac{8\pi}{9},-\frac{7\pi}{12},\frac{\pi}{12} \rangle.$$ This is just another way of writing $$\frac{8\pi}{9} \mathbf{i} -\frac{7\pi}{12} \mathbf{j} +\frac{\pi}{12} \mathbf{k}.$$

Ricky Escobar - 7 years, 5 months ago

Log in to reply

thanku brother..:)

Vipin Baisla - 7 years, 5 months ago

actually i forgot to set the calc on radian mode and i solved it on degree mode so i got diffrent answer ....now recently i made it again putting calc in rad mode and got the correct anwser..thanku...thanku..

Vipin Baisla - 7 years, 5 months ago

25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...