Year 2018 2018 in an Exponent.

Algebra Level 3

If a 1 , a 2 , , a 2018 a_1,a_2,\dots,a_{2018} are the roots of the polynomial: x 2018 + x 2017 + x 2016 + + x 2 + x = 1008.5 x^{2018}+x^{2017}+x^{2016}+\dots+x^2+x = 1008.5

then what is n = 1 2018 1 1 a n = ? \sum_{n=1}^{2018}\frac{1}{1-a_n}=?


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jon Haussmann
Sep 15, 2018

Let f ( x ) = x 2018 + x 2017 + x 2016 + + x 2 + x 1008.5 f(x) = x^{2018} + x^{2017} + x^{2016} + \dots + x^2 + x - 1008.5 . Since a 1 a_1 , a 2 a_2 , \dots , a 2018 a_{2018} are the roots, f ( x ) = ( x a 1 ) ( x a 2 ) ( x a 2018 ) . f(x) = (x - a_1)(x - a_2) \dotsm (x - a_{2018}). By logarithmic differentiation, f ( x ) f ( x ) = 1 x a 1 + 1 x a 2 + + 1 x a 2018 . \frac{f'(x)}{f(x)} = \frac{1}{x - a_1} + \frac{1}{x - a_2} + \dots + \frac{1}{x - a_{2018}}. Thus, 1 1 a 1 + 1 1 a 2 + + 1 1 a 2018 = f ( 1 ) f ( 1 ) = 2018 + 2017 + + 1 2018 1008.5 = 2018 2019 / 2 1009.5 = 2018. \frac{1}{1 - a_1} + \frac{1}{1 - a_2} + \dots + \frac{1}{1 - a_{2018}} = \frac{f'(1)}{f(1)} = \frac{2018 + 2017 + \dots + 1}{2018 - 1008.5} = \frac{2018 \cdot 2019/2}{1009.5} = 2018.

Thank you, nice solution.

Hana Wehbi - 2 years, 8 months ago

its 2020 now lol

Odin Wang - 10 months ago

Log in to reply

It was an old problem and the current year at that time was 2018 2018

Hana Wehbi - 10 months ago
Chew-Seong Cheong
Sep 13, 2018

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

n = 1 2018 1 1 a n = 2018 2017 c y c a 1 + 2016 c y c a 1 a 2 2015 c y c a 1 a 2 a 3 + c y c a 1 a 2 a 3 a 2017 n = 1 2018 ( 1 a n ) \begin{aligned} \sum_{n=1}^{2018} \frac 1{1-a_n} & = \frac {\displaystyle 2018 - 2017 \sum_{cyc} a_1 + 2016 \sum_{cyc} a_1a_2 - 2015 \sum_{cyc} a_1a_2a_3 + \cdots - \sum_{cyc} a_1a_2a_3 \cdots a_{2017}}{\displaystyle \prod_{n=1}^{2018}(1-a_n)} \end{aligned}

Given that a 1 , a 2 , a 3 a 2018 a_1, a_2, a_3 \cdots a_{2018} are roots of x 2018 + 2 2017 + x 2016 + + x 2 + x 1008.5 = 0 x^{2018} + 2^{2017} + x^{2016} + \cdots + x^2 + x - 1008.5 = 0 , by Vieta's formula, we have c y c a 1 a 2 a 3 a n = ( 1 ) n \displaystyle \sum_{cyc} a_1 a_2a_3\cdots a_n = (-1)^n and that n = 1 2018 ( x a n ) = x 2018 + 2 2017 + x 2016 + + x 2 + x 1008.5 \displaystyle \prod_{n=1}^{2018}(x-a_n) = x^{2018} + 2^{2017} + x^{2016} + \cdots + x^2 + x - 1008.5 n = 1 2018 ( 1 a n ) = 2018 1008.5 = 1009.5 = 2019 2 \implies \displaystyle \prod_{n=1}^{2018}(1-a_n) = 2018 - 1008.5 = 1009.5 = \dfrac {2019}2 . Therefore,

n = 1 2018 1 1 a n = 2018 + 2017 + 2016 + 2015 + + 1 n = 1 2018 ( 1 a n ) = 2018 2019 2 2019 2 = 2018 \begin{aligned} \sum_{n=1}^{2018} \frac 1{1-a_n} & = \frac {2018 + 2017 + 2016 + 2015 + \cdots + 1}{\displaystyle \prod_{n=1}^{2018}(1-a_n)} = \frac {\frac {2018\cdot 2019}2}{\frac {2019}2} = \boxed{2018} \end{aligned}

Generalization:

For k = 1 n x k = n 1 2 \displaystyle \sum_{k=1}^n x^k = \frac {n-1}2 , then k = 1 n 1 1 a k = k = 1 n k k = 1 n ( 1 a k ) = n ( n + 1 ) 2 n n 1 2 = n \displaystyle \sum_{k=1}^n \frac 1{1-a_k} = \frac {\sum_{k=1}^n k}{\prod_{k=1}^n (1-a_k)} = \frac {\frac {n(n+1)}2}{n - \frac {n-1}2} = n

Note: The coefficients in the numerator come from ( 1 ) k n ( n 1 k ) ( n k ) = ( 1 ) k n ( n 1 ) ! k ! ( n k 1 ) ! k ! ( n k ) ! n ! = ( 1 ) k ( n k ) (-1)^k\dfrac {n\binom {n-1}k}{\binom nk} = (-1)^k \dfrac {n(n-1)!}{k!(n-k-1)!}\cdot \dfrac {k!(n-k)!}{n!} = (-1)^k(n-k) , for k = 0 , 1 , 2 , . . . n k = 0, 1, 2, ... n .

Hana, I think it should be x 2018 + 2 2017 + x 2016 + + x 2 + x = 1008.5 x^{2018} + 2^{2017} + x^{2016} + \cdots + x^2 + x = \color{#3D99F6} 1008.5 instead of 1009.5 \color{#D61F06} 1009.5 . Please check.

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

Actually, the problem is original and I wanted to tag you to see if it is correct, just to double check. Therefore, I am going to change the answer to 1008.5. That is how I solved it too. Thank you for sharing the solution.

Hana Wehbi - 2 years, 9 months ago
Hana Wehbi
Sep 15, 2018

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

Let's begin by defining b n = 1 1 a n b_n=\frac{1}{1-a_n} . Rearranging gives us a n = b n 1 b n a_n=\frac{b_n -1}{b_n} . Since we know that 1008.5 + k = 0 2018 a n k = 0 -1008.5+\sum_{k=0}^{2018}a^k_n =0 for all 1 n 2018 1\le n\le 2018 , we can substitute b n b_n in to get a new polynomial: k = 0 2018 ( b n 1 b n ) k 1008.5 = 0 k = 0 2018 ( b n ) 2018 k ( b n 1 ) k 1008.5 b n 2018 = 0 \sum_{k=0}^{2018} \Big(\frac{b_n -1}{b_n}\Big)^k -1008.5 =0 \implies \sum_{k=0}^{2018} (b_n)^{2018-k}(b_n-1)^k -1008.5 \ b_n^{2018} =0

where we have multiplied both sides by b n 2018 b_n^{2018} which is nonzero because a n 1 a_n \ne 1 . This is true for all 1 n 2018 1\le n \le 2018 , so b n b_n are the roots of the polynomial: k = 0 2018 x 2018 ( x 1 ) k 1008.5 x 2018 = 0. \sum_{k=0}^{2018}x^{2018}(x-1)^k - 1008.5 \ x^{2018}=0.

By Vieta's it is enough to calculate the coefficients of x 2018 x^{2018} and x 2017 x^{2017} in the polynomial to compute the roots.

We see that the coefficients of x 2018 x^{2018} is 2018 1008.5 = 1009.5 2018-1008.5=1009.5 , and the coefficient of x 2017 = 1 2 2018 = ( 2018 ) ( 2019 ) 2 . x^{2017}= -1-2-\dots-2018=\frac{-(2018)(2019)}{2}.

Thus, n = 1 2018 1 1 a n = 2018 × 2019 2 × 1009.5 = 2018 \sum_{n=1}^{2018}\frac{1}{1-a_n}= \frac{2018\times2019}{2\times 1009.5}= \boxed{2018} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...