Cursed angle bisectors!

Geometry Level 5

Let there exist a right-angled triangle A B C ABC , with A B C = 9 0 \angle ABC = 90^{\circ} . Let C D CD be the internal angle bisector of A C B \angle ACB , with D D on A B AB and let A E AE be the internal angle bisector of B A C \angle BAC , with E E on B C BC .

Let the length of A E AE is 9 9 and the length of C D CD is 8 2 8\sqrt{2} . If the length of A C AC is a b a \sqrt{b} where a a and b b are positive integers and b b is square-free, find the value of a + b a+b .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush G Rai
Nov 4, 2016

Following is one method of solution; others exist.

Let B A E = x \angle BAE = x and B C D = y . \angle BCD = y.

A B = 9 × c o s x = A C × c o s 2 x . AB = 9 \times cos x = AC\times cos 2x.
B C = 8 2 × c o s y = A C × c o s 2 y . BC = 8\sqrt2 \times cos y = AC\times cos 2y.
Eliminating A C : AC:
( 9 c o s x ) ( c o s 2 x ) = ( 8 2 c o s y ) ( c o s 2 y ) . \dfrac{(9 cos x)}{(cos 2x)} = \dfrac{(8\sqrt2 cos y)}{(cos 2y)}.


y = 4 5 x . y = 45^\circ - x. Also, 2 y = 9 0 2 x 2y = 90^\circ - 2x , and so c o s 2 y = s i n 2 x . cos 2y = sin 2x. Therefore:
( 9 c o s x ) ( c o s 2 x ) = ( 8 2 c o s ( 4 5 x ) ) ( s i n 2 x ) . \dfrac{(9 cos x)}{(cos 2x)} = \dfrac{(8\sqrt2 cos (45^\circ-x))}{(sin 2x)}.
Using trigonometric identity c o s ( a b ) = c o s a c o s b + s i n a s i n b : cos(a - b) = cos a · cos b + sin a · sin b:
c o s ( 4 5 x ) = ( c o s x + s i n x ) 2 . cos (45^\circ-x) = \dfrac{(cos x + sin x)}{\sqrt2}.

Rearranging: t a n 2 x = 8 ( c o s x + s i n x ) 9 c o s x . tan 2x = \dfrac{8(cos x + sin x)}{9 cos x}.

Using trigonometric identity t a n 2 a = ( 2 t a n a ) ( 1 t a n 2 a ) , tan 2a = \dfrac{(2 tan a)}{(1 - tan2a)}, and letting t = t a n x : t = tan x:
2 t ( 1 t 2 ) = 8 ( 1 + t ) 9 . \dfrac{2t}{(1 - t^2)} = \dfrac{8(1 + t)}{9}.
Therefore 9 t 4 = ( 1 + t ) ( 1 t 2 ) = 1 + t t 2 t 3 . \dfrac{9t}{4} = (1 + t)(1 - t^2) = 1 + t - t^2 - t^3.
Hence t 3 + t 2 + ( 5 4 ) t 1 = 0. t^3 + t^2 + (\frac{5}{4})t - 1 = 0.

By inspection, one root is t = 1 2 . t = \dfrac{1}{2}.
Therefore ( t 1 2 ) ( t 2 + 3 t 2 + 2 ) = 0. (t - \dfrac{1}{2})(t^2 + \dfrac{3t}{2} + 2) = 0.
The quadratic factor has no real roots (since ( 3 2 ) . 2 4 × 1 × 2 < 0 (\frac{3}{2}).2 - 4\times1\times2 < 0 ), and so t = 1 2 t = \dfrac{1}{2} is the only real root.

A C = 9 c o s x c o s 2 x . AC = \dfrac{9cos x}{cos 2x}.

Using trigonometric identities c o s x = 1 ( 1 + t 2 ) , c o s 2 x = ( 1 t 2 ) ( 1 + t 2 ) : cos x = \dfrac{1}{\sqrt{(1 + t^2)}}, cos 2x = \dfrac{(1 - t^2)}{(1 + t^2)} :
A C = 9 ( 1 + t 2 ) ( 1 t 2 ) . AC = \dfrac{9\sqrt{(1 + t^2)}}{(1 - t^2)}.

Therefore A C = 9 ( 5 2 ) 3 4 = 6 5 . AC = \dfrac{9(\frac{\sqrt5}{2})}{\dfrac{3}{4}} = 6\sqrt 5.

So, a = 6 a=6 and b = 5. b=5. Hence a + b = 6 + 5 = 11 . a+b=6+5=\boxed{11}.

that's a beautiful solution my friend with some excellent and smart manipulations.

Sathvik Acharya - 4 years, 3 months ago

Log in to reply

thanks sathvik :)

Ayush G Rai - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...