Curvature Charm

Geometry Level 5

As shown above, in one of the two pink semicircles whose diameter is the length of the side of a unit square, two violet semicircles, one green circle and one blue circle are symmetrically positioned. The red ellipse whose semi-minor axis is the radius of the cyan circle and whose major axis is parallel to one of the square sides is also positioned symmetrically, but tangent to both pink semicircles each at one point.

If the semi-major axis can be expressed as

a b c d ( e f g ) \dfrac{a}{b}\sqrt{\dfrac{c}{d}(e - f\sqrt{g})}

where

  • a , b , c , d , e , f , g a,b,c,d,e,f,g are positive integers;
  • gcd ( a , b ) = gcd ( c , d ) = gcd ( e , f ) = 1 \gcd(a,b) = \gcd(c,d) = \gcd(e,f) = 1 ;
  • c , d , g c,d,g are square free

Input the product a b c d e f g abcdefg as your answer.


The answer is 60314280.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Figure 1 Figure 1 Let C p ( E , r p ) {{C}_{p}}\left( E,{{r}_{p}} \right) , C g ( G , r g ) {{C}_{g}}\left( G,{{r}_{g}} \right) , C v ( F , r v ) {{C}_{v}}\left( F,{{r}_{v}} \right) and C b ( K , r b ) {{C}_{b}}\left( K,{{r}_{b}} \right) be the left pink semicircle, the green, the violet and the blue circles respectively (figure 1). Then, r p = 1 2 a n d r g = 1 4 {{r}_{p}}=\dfrac{1}{2} \ \ \ \ and \ \ \ \ {{r}_{g}}=\dfrac{1}{4}

By Pythagorean theorem on E G F \triangle EGF , F G 2 = E G 2 + E F 2 ( r g + r v ) 2 = r g 2 + ( r p r v ) 2 ( 1 4 + r v ) 2 = 1 16 + ( 1 2 r v ) 2 r v = 1 6 \begin{aligned} F{{G}^{2}}=E{{G}^{2}}+E{{F}^{2}} & \Rightarrow {{\left( {{r}_{g}}+{{r}_{v}} \right)}^{2}}={{r}_{g}}^{2}+{{\left( {{r}_{p}}-{{r}_{v}} \right)}^{2}} \\ & \Rightarrow {{\left( \dfrac{1}{4}+{{r}_{v}} \right)}^{2}}=\dfrac{1}{16}+{{\left( \dfrac{1}{2}-{{r}_{v}} \right)}^{2}} \\ & \Rightarrow {{r}_{v}}=\dfrac{1}{6} \\ \end{aligned} Using Descart’s circle theorem we calculate the radius of the blue circle: k b = k v + k g + k p 2 k v k g + k g k p + k p k v = 6 + 4 2 2 6 × 4 + 4 × ( 2 ) + ( 2 ) × 6 = 12 r b = 1 12 \begin{aligned} {{k}_{b}} & ={{k}_{v}}+{{k}_{g}}+{{k}_{p}}-2\sqrt{{{k}_{v}}{{k}_{g}}+{{k}_{g}}{{k}_{p}}+{{k}_{p}}{{k}_{v}}} \\ & =6+4-2-2\sqrt{6\times 4+4\times \left( -2 \right)+\left( -2 \right)\times 6} \\ & =12 \\ & \\ \Rightarrow {{r}_{b}}=\dfrac{1}{12} \\ \end{aligned}

Figure 2 Figure 2 We place the configuration on a coordinate system, so that the center of the ellipse is at the origin and its major axis is on the x x -axis (figure 2). Then, the equation of C p {{C}_{p}} is
( x + 1 2 ) 2 + ( y 5 12 ) 2 = 1 4 {{\left( x+\dfrac{1}{2} \right)}^{2}}+{{\left( y-\dfrac{5}{12} \right)}^{2}}=\dfrac{1}{4} The semi-minor axis of the ellipse is b = r b = 1 12 b={{r}_{b}}=\dfrac{1}{12} .
If a a is the major semi-axis of the ellipse, then its equation is x 2 a 2 + 144 y 2 = 1 \frac{{{x}^{2}}}{{{a}^{2}}}+144{{y}^{2}}=1 Let l l be the common tangent of the left pink semicircle C p {{C}_{p}} and the ellipse and N ( x N , y N ) N\left( {{x}_{N}},{{y}_{N}} \right) their point of tangency. Then, the equation of l l as a tangent to the ellipse at N N is x N a 2 x + 144 y N y = 1 \frac{{{x}_{N}}}{{{a}^{2}}}x+144{{y}_{N}}y=1 The slope of l l is m l = x N 144 a 2 y N {{m}_{l}}=-\dfrac{{{x}_{N}}}{144{{a}^{2}}{{y}_{N}}} and the slope of line E N EN is m E N = y N y E x N x E = y N 5 12 x N + 1 2 = 12 y N 5 12 x N + 6 {{m}_{EN}}=\frac{{{y}_{N}}-{{y}_{E}}}{{{x}_{N}}-{{x}_{E}}}=\dfrac{{{y}_{N}}-\dfrac{5}{12}}{{{x}_{N}}+\dfrac{1}{2}}=\dfrac{12{{y}_{N}}-5}{12{{x}_{N}}+6} So, we have E N l m E N m l = 1 12 y N 5 12 x N + 6 ( x N 144 a 2 y N ) = 1 144 a 2 y N ( 12 x N + 6 ) = x N ( 12 y N 5 ) EN\bot l\Rightarrow {{m}_{EN}}{{m}_{l}}=-1\Rightarrow \dfrac{12{{y}_{N}}-5}{12{{x}_{N}}+6}\cdot \left( -\dfrac{{{x}_{N}}}{144{{a}^{2}}{{y}_{N}}} \right)=-1\Leftrightarrow 144{{a}^{2}}{{y}_{N}}\left( 12{{x}_{N}}+6 \right)={{x}_{N}}\left( 12{{y}_{N}}-5 \right) N N belongs to both C p {{C}_{p}} and the ellipse, thus we get the system { ( x N + 1 2 ) 2 + ( y N 5 12 ) 2 = 1 4 x N 2 a 2 + 144 y N 2 = 1 144 a 2 y N ( 12 x N + 6 ) = x N ( 12 y N 5 ) \left\{ \begin{matrix} {{\left( {{x}_{N}}+\dfrac{1}{2} \right)}^{2}}+{{\left( {{y}_{N}}-\dfrac{5}{12} \right)}^{2}}=\dfrac{1}{4} \\[1em] \dfrac{{{x}_{N}}^{2}}{{{a}^{2}}}+144{{y}_{N}}^{2}=1 \\[1em] 144{{a}^{2}}{{y}_{N}}\left( 12{{x}_{N}}+6 \right)={{x}_{N}}\left( 12{{y}_{N}}-5 \right) \\ \end{matrix} \right. Solving this system for the positive number a a we get a = 1 8 1 15 ( 299 41 41 ) a=\frac{1}{8}\sqrt{\frac{1}{15}\left( 299-41\sqrt{41} \right)} For the answer, a b c d e f g = 1 × 8 × 1 × 15 × 299 × 41 × 41 = 60314280 abcdefg=1\times 8\times 1\times 15\times 299\times 41\times 41=\boxed{60314280} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...