Cute calculus : Problem no.1

Calculus Level pending

If f ( x ) d x = F ( x ) \displaystyle\large\int { f\left( x \right) dx=F\left( x \right) } . Then x 3 f ( x 2 ) d x \displaystyle \large \int { { x }^{ 3 } } f\left( { x }^{ 2 } \right) dx is equal to :

A) 1 2 [ x 2 F ( x 2 ) F ( x 2 ) d ( x 2 ) ] \displaystyle \cfrac { 1 }{ 2 } \left[ { x }^{ 2 }{ F\left( { x }^{ 2 } \right) }-\int { F\left( { x }^{ 2 } \right) d\left( { x }^{ 2 } \right) } \right]

B) 1 2 [ x 2 { F ( x ) } 2 { F ( x ) } 2 d x ] \displaystyle \cfrac { 1 }{ 2 } \left[ { x }^{ 2 }{ \left\{ F\left( x \right) \right\} }^{ 2 }-\int { { \left\{ F\left( x \right) \right\} }^{ 2 }dx } \right]

C) 1 2 [ x 2 F ( x ) 1 2 { F ( x ) } 2 d x ] \displaystyle \cfrac { 1 }{ 2 } \left[ { x }^{ 2 }F\left( x \right) -\cfrac { 1 }{ 2 } \int { { \left\{ F\left( x \right) \right\} }^{ 2 }dx } \right]

D) None Of These

More Cute Calculus .
B C A D

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using partial integration:

u d v = u v v d u \displaystyle \int {u dv} = uv - \int {v du}

And let:

{ u = x 2 2 d u = d ( x 2 ) 2 d v = 2 x f ( x 2 ) v = F ( x 2 ) \begin{cases} u = \dfrac {x^2}{2} & \Rightarrow du = \dfrac{d(x^2)}{2} \\ dv = 2xf(x^2) & \Rightarrow v = F(x^2) \end{cases}

x 3 f ( x 2 ) d x = x 2 2 ˙ 2 x f ( x 2 ) d x = x 2 2 ˙ F ( x 2 ) F ( x 2 ) ˙ d ( x 2 ) 2 = 1 2 ( x 2 F ( x 2 ) F ( x 2 ) d ( x 2 ) ) \begin{aligned} \displaystyle \int {x^3f(x^2)dx} & = \int {\dfrac {x^2}{2}\dot{} 2xf(x^2)dx} \\ & = \dfrac {x^2}{2} \dot{} F(x^2) - \int {F(x^2) \dot{} \dfrac {d(x^2)}{2}} \\ & = \boxed {\displaystyle \frac {1}{2} \left( x^2F(x^2)- \int {F(x^2) d(x^2)} \right)} \end{aligned}

Yes ! Really cute :D

Keshav Tiwari - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...