Intertwined Integrals

Calculus Level 1

If an antiderivative of f ( x ) f\left( x \right) is e x { e }^{ x } and that of g ( x ) g\left( x \right) is cos x \cos { x } , then f ( x ) cos x d x + g ( x ) e x d x \displaystyle \int { f\left( x \right) \cos { x } \ dx } +\int { g\left( x \right) { e }^{ x } \ dx } is equal to

e x cos x + C { e }^{ x }\cos { x } +C f ( x ) g ( x ) + C f\left( x \right) -g\left( x \right) +C f ( x ) + g ( x ) + C f\left( x \right) +g\left( x \right) +C f ( x ) . g ( x ) + C f\left( x \right) .g\left( x \right) +C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Caleb Townsend
Apr 6, 2015

f ( x ) = d d x e x = e x g ( x ) = d d x cos ( x ) = sin ( x ) f ( x ) cos ( x ) d x = e x cos ( x ) d x = e x cos ( x ) e x sin ( x ) d x f(x) = \frac{d}{dx} e^x = e^x \\ g(x) = \frac{d}{dx} \cos(x) = -\sin(x) \\ \int f(x) \cos(x) dx = \int e^x\cos(x)dx \\ = e^x\cos(x) - \int -e^x\sin(x) dx Now substituting this into the problem, f ( x ) cos ( x ) d x + g ( x ) e x d x = e x cos ( x ) d x + sin ( x ) e x d x = e x cos ( x ) e x sin ( x ) d x + e x sin ( x ) d x = e x cos ( x ) + C \int f(x)\cos(x) dx + \int g(x)e^x dx = \\ \int e^x \cos(x) dx + \int -\sin(x) e^x dx \\ = e^x\cos(x) - \int -e^x\sin(x) dx + \int -e^x\sin(x) dx \\ = \boxed{e^x\cos(x) + C}

Stewart Gordon
May 14, 2015

The integral is just e x ( cos x sin x ) d x \int e^x (\cos x - \sin x) dx Since e x e^x is its own derivative, and sin x -\sin x is the derivative of cos x \cos x , the integrand is a result of applying the product rule.

f ( x ) c o s x d x + g ( x ) e x d x \displaystyle \int f(x) cosx dx + \displaystyle \int g(x) e^{x} dx = e x c o s x e x g ( x ) d x + g ( x ) e x d x =e^{x}cosx - \displaystyle \int e^{x}g(x) dx + \displaystyle \int g(x) e^{x} dx = e x c o s x + C =e^{x}cosx +C

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...