Cute exponentials

Geometry Level 4

Solve { e x + y + e y + z + e z + x = 1 e 2 x + e 2 y + e 2 z = 26 27 + e 2 x + 2 y + 2 z \large \begin{cases} { e }^{ x+y }+{ e }^{ y+z }+{ e }^{ z+x }=1 \\ { e }^{ 2x }+{ e }^{ 2y }+{ e }^{ 2z }=\frac { 26 }{ 27 } +{ e }^{ 2x+2y+2z } \end{cases} If x + y + z = x+y+z= b a ln b -\dfrac ba\ln { b } , where a a and b b are primes, find a + b + 1 a+b+1 .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 14, 2017

Let e x = a e^x = a , e y = b e^y=b and e z = c e^z=c . Then we have

{ a b + b c + c a = 1 . . . ( 1 ) a 2 + b 2 + c 2 = 26 27 + ( a b c ) 2 . . . ( 2 ) \begin{cases} ab + bc + ca = 1 &...(1) \\ a^2+b^2+c^2 = \dfrac {26}{27} + (abc)^2 &...(2) \end{cases}

By Cauchy-Schwarz inequality on ( 1 ) 2 (1)^2 :

( a b + b c + c a ) 2 ( a 2 + b 2 + c 2 ) ( b 2 + c 2 + a 2 ) a b + b c + c a a 2 + b 2 + c 2 a 2 + b 2 + c 2 1 \begin{aligned} (ab + bc + ca)^2 & \le \left(a^2+b^2+c^2\right) \left(b^2+c^2+a^2\right) \\ ab + bc + ca & \le a^2+b^2+c^2 \\ \implies a^2+b^2+c^2 & \ge 1 \end{aligned}

\implies The LHS of ( 2 ) 1 (2) \ge 1 .

By AM-GM inequality on ( 1 ) (1) :

a b + b c + c a 3 ( a b c ) 2 3 1 3 27 ( a b c ) 2 ( a b c ) 2 1 27 \begin{aligned} ab + bc + ca & \ge 3 \sqrt [3]{(abc)^2} \\ 1^3 & \ge 27 (abc)^2 \\ \implies (abc)^2 & \le \frac 1{27} \end{aligned}

\implies The RHS of ( 2 ) = 26 27 + ( a b c ) 1 (2) = \dfrac {26}{27} + (abc) \le 1 .

Since the LHS of ( 2 ) 1 (2) \ge 1 and the RHS of ( 2 ) 1 (2) \le 1 , LHS = = RHS, when the equality occurs to 3 ( a b c ) 2 3 a b + b c + c a a 2 + b 2 + c 2 = 1 3 \sqrt [3]{(abc)^2} \le ab+bc+ca \le a^2+b^2+c^2 = 1 , when a = b = c = 1 3 a=b=c = \dfrac 1{\sqrt 3} .

e x + y + z = a b c = 1 3 3 x + y + z = ln ( 1 3 3 ) = 3 2 ln 3 \begin{aligned} \implies e^{x+y+z} & = abc = \frac 1{3\sqrt 3} \\ \implies x+y + z & = \ln \left(\frac 1{3\sqrt 3} \right) = - \frac 32 \ln 3 \end{aligned}

a + b + 1 = 2 + 3 + 1 = 6 \implies a+b + 1 = 2+3 + 1=\boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...