Cute Limit

Calculus Level 3

Find the value of the following limit without using L'Hôpital's rule: lim x 1 sin ( 1 cos ( x 1 ) ) x ( x 1 ) \lim_{x\to 1} \frac{\sin(1-\cos(x-1))}{x(x-1)}


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

lim x 1 sin ( 1 cos ( x 1 ) ) x ( x 1 ) 1 cos ( x 1 ) 1 cos ( x 1 ) \lim_{x\to1} \frac{\sin(1-\cos(x-1))}{x(x-1)} \cdot \frac{1-\cos(x-1)}{1-\cos(x-1)} = lim x 1 1 cos ( x 1 ) x ( x 1 ) =\lim_{x\to1} \frac{1-\cos(x-1)}{x(x-1)} You can make a change of variable for seeing this a simpler way: u = x 1 u=x-1 . lim u 0 1 cos ( u ) u ( u + 1 ) = lim u 0 1 cos ( u ) u ( u + 1 ) 1 + cos ( u ) 1 + cos ( u ) \lim_{u\to0} \frac{1-\cos(u)}{u(u+1)} = \lim_{u\to0} \frac{1-\cos(u)}{u(u+1)} \cdot \frac{1+\cos(u)}{1+\cos(u)} lim u 0 1 cos 2 ( u ) u ( u + 1 ) ( 1 + cos ( u ) ) = lim u 0 sin ( u ) u sin ( u ) ( u + 1 ) ( 1 + cos ( u ) ) = 0 \lim_{u\to0} \frac{1-\cos^2(u)}{u(u+1)(1+\cos(u))} = \lim_{u\to0} \frac{\sin(u)}{u} \cdot \frac{\sin(u)}{(u+1)(1+\cos(u))}=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...