Cute

Calculus Level 2

What is the value of lim t 1 t 1 x ( x 2 + 1 ) d x \displaystyle \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x(x^{2}+1)}dx ?

1 1 11 4 \frac {11}{4} ln 2 \ln\sqrt{2} 3 ln 2 3\ln2 1 + ln 2 1+\ln2 1 4 \frac{1}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 21, 2018

I = 1 1 x ( x 2 + 1 ) d x Let u = x 2 d u = 2 x d x = 1 1 2 u ( u + 1 ) d u = 1 2 1 ( 1 u 1 u + 1 ) d u = 1 2 [ ln u ln ( u + 1 ) ] 1 = 1 2 ln ( u u + 1 ) 1 = 1 2 ln 2 = ln 2 \begin{aligned} I & = \int_1^\infty \frac 1{x(x^2+1)}dx & \small \color{#3D99F6} \text{Let }u = x^2 \implies du = 2x \ dx \\ & = \int_1^\infty \frac 1{2u(u+1)}du \\ & = \frac 12 \int_1^\infty \left(\frac 1u - \frac 1{u+1} \right) du \\ & = \frac 12 \bigg[\ln u - \ln (u+1)\bigg]_1^\infty \\ & = \frac 12 \ln \left(\frac u{u+1}\right) \bigg|_1^\infty \\ & = \frac 12 \ln 2 \\ & = \boxed{\ln \sqrt 2} \end{aligned}

Note first that 1 x ( x 2 + 1 ) = 1 + x 2 x 2 x ( x 2 + 1 ) = 1 x x x 2 + 1 \dfrac{1}{x(x^{2} + 1)} = \dfrac{1 + x^{2} - x^{2}}{x(x^{2} + 1)} = \dfrac{1}{x} - \dfrac{x}{x^{2} + 1} .

Integrating these two terms separately, the second using the substitution u = x 2 + 1 , d u = 2 x d x u = x^{2} + 1, du = 2x dx , gives us that

1 x ( x 2 + 1 ) d x = ln ( x ) 1 2 ln ( x 2 + 1 ) + C = ln ( x x 2 + 1 ) + C \displaystyle\int \dfrac{1}{x(x^{2} + 1)} dx = \ln(x) - \dfrac{1}{2} \ln(x^{2} + 1) + C = \ln \left(\dfrac{x}{\sqrt{x^{2} + 1}}\right) + C .

Now ln ( x x 2 + 1 ) = ln ( x x 1 + 1 x 2 ) \ln \left( \dfrac{x}{\sqrt{x^{2} + 1}} \right) = \ln \left ( \dfrac{x}{x \sqrt{1 + \dfrac{1}{x^{2}}}} \right) , which ln ( 1 ) = 0 \to \ln(1) = 0 as x x \to \infty .

Thus when we evaluate the integral as stated we obtain the answer 0 ln ( 1 2 ) = ln 2 0 - \ln\left(\dfrac{1}{\sqrt{2}}\right) = \boxed{\ln \sqrt{2}} .

* ln 2 \ln\sqrt{2}

Green Elephant - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...