Cutie pi!

Geometry Level 5

sin ( π 14 ) sin ( 3 π 14 ) sin ( 5 π 14 ) sin ( 7 π 14 ) sin ( 9 π 14 ) sin ( 11 π 14 ) sin ( 13 π 14 ) \large \sin\left( \frac \pi{14} \right) \sin\left( \frac {3\pi}{14} \right) \sin\left( \frac {5\pi}{14} \right) \sin\left( \frac {7\pi}{14} \right) \sin\left( \frac {9\pi}{14} \right) \sin\left( \frac {11\pi}{14} \right) \sin\left( \frac {13\pi}{14} \right)

If the expression above can be simplified to the form p q \frac pq for coprime positive integers, find p + q p+q .


The answer is 65.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the expression be:

P = sin ( π 14 ) sin ( 3 π 14 ) sin ( 5 π 14 ) sin ( 7 π 14 ) sin ( 9 π 14 ) sin ( 11 π 14 ) sin ( 13 π 14 ) = sin ( π 14 ) sin ( 3 π 14 ) sin ( 5 π 14 ) sin ( π 2 ) sin ( 5 π 14 ) sin ( 3 π 14 ) sin ( π 14 ) = sin 2 ( π 14 ) sin 2 ( 3 π 14 ) sin 2 ( 5 π 14 ) = cos 2 ( 3 π 7 ) cos 2 ( 2 π 7 ) cos 2 ( π 7 ) = 1 8 [ 1 + cos ( 6 π 7 ) ] [ 1 + cos ( 4 π 7 ) ] [ 1 + cos ( 2 π 7 ) ] \begin{aligned} P & = \sin{\left(\frac{\pi}{14} \right)} \sin{\left(\frac{3\pi}{14} \right)} \sin{\left(\frac{5\pi}{14} \right)} \sin{\left(\frac{7\pi}{14} \right)} \sin{\left(\frac{9\pi}{14} \right)} \sin{\left(\frac{11\pi}{14} \right)} \sin{\left(\frac{13\pi}{14} \right)} \\ & = \sin{\left(\frac{\pi}{14} \right)} \sin{\left(\frac{3\pi}{14} \right)} \sin{\left(\frac{5\pi}{14} \right)} \sin{\left(\frac{\color{#3D99F6}{\pi}}{\color{#3D99F6}{2}} \right)} \sin{\left(\frac{\color{#3D99F6}{5\pi}}{14} \right)} \sin{\left(\frac{\color{#3D99F6}{3\pi}}{14} \right)} \sin{\left(\frac{\color{#3D99F6}{\pi}}{14} \right)} \\ & = \sin^2{\left(\frac{\pi}{14} \right)} \sin^2{\left(\frac{3\pi}{14} \right)} \sin^2{\left(\frac{5\pi}{14} \right)} \\ & = \cos^2{\left(\frac{3\pi}{7} \right)} \cos^2{\left(\frac{2\pi}{7} \right)} \cos^2{\left(\frac{\pi}{7} \right)} \\ & = \frac{1}{8} \left[ 1+ \cos{\left(\frac{6\pi}{7} \right)} \right] \left[1+ \cos{\left(\frac{4\pi}{7} \right)} \right] \left[ 1+ \cos{\left(\frac{2\pi}{7} \right)} \right] \end{aligned}

We know that:

cos ( 2 π 7 ) + cos ( 4 π 7 ) + cos ( 6 π 7 ) = 1 2 \begin{aligned} \cos{\left(\frac{2\pi}{7} \right)} + \cos{\left(\frac{4\pi}{7} \right)} + \cos{\left(\frac{6\pi}{7} \right)} = - \frac{1}{2} \end{aligned}

Let a = cos ( 2 π 7 ) \space a = \cos{\left(\frac{2\pi}{7} \right)} , then:

a + 2 a 2 1 + 4 a 3 3 a = 1 2 4 a 3 + 2 a 2 2 a 1 2 = 0 8 a 3 + 4 a 2 4 a 1 = 0 \begin{aligned} a + 2a^2-1 + 4a^3 - 3a & = - \frac{1}{2} \\ 4a^3 + 2a^2 - 2a - \frac{1}{2} & = 0 \\ 8a^3 + 4a^2 - 4a - 1 & = 0 \end{aligned}

Now, we have:

P = 1 8 [ 1 + cos ( 6 π 7 ) ] [ 1 + cos ( 4 π 7 ) ] [ 1 + cos ( 2 π 7 ) ] = 1 8 ( 1 + 4 a 3 3 a ) ( 1 + 2 a 2 1 ) ( 1 + a ) = 1 8 ( 4 a 3 3 a + 1 ) ( 2 a 2 ) ( a + 1 ) = 1 8 ( 8 a 3 + 4 a 2 4 a 1 4 a 2 2 a + 1 + 2 ) ( 2 a 2 ) ( a + 1 ) = 1 8 ( 4 a 2 2 a + 3 ) ( a 2 ) ( a + 1 ) = 1 16 ( 8 a 3 4 a 2 + 4 a + 1 4 a 1 + 6 a ) ( a ) ( a + 1 ) = 1 16 ( 2 a 1 ) ( a ) ( a + 1 ) = 1 16 ( 2 a 1 ) ( a 2 + a ) = 1 16 ( 2 a 3 + a 2 a ) = 1 64 ( 8 a 3 + 4 a 2 4 a 1 + 1 ) = 1 64 \begin{aligned} P & = \frac{1}{8} \left[ 1+ \cos{\left(\frac{6\pi}{7} \right)} \right] \left[1+ \cos{\left(\frac{4\pi}{7} \right)} \right] \left[ 1+ \cos{\left(\frac{2\pi}{7} \right)} \right] \\ & = \frac{1}{8} \left(1+4a^3-3a \right) \left(1+2a^2-1 \right) \left(1+a \right) \\ & = \frac{1}{8} \left(4a^3-3a + 1 \right) \left(2a^2 \right) \left(a + 1\right) \\ & = \frac{1}{8} \left(8a^3 + 4a^2 - 4a - 1 - 4a^2-2a + 1 + 2 \right) \left(2a^2 \right) \left(a + 1\right) \\ & = \frac{1}{8} \left(- 4a^2-2a + 3 \right) \left(a^2 \right) \left(a + 1\right) \\ & = \frac{1}{16} \left(- 8a^3-4a^2 + 4a +1 -4a -1 + 6a \right) \left(a \right) \left(a + 1\right) \\ & = \frac{1}{16} \left(2a - 1 \right)\left(a \right) \left(a + 1\right) \\ & = \frac{1}{16} \left(2a - 1 \right) \left(a^2 + a \right) \\ & = \frac{1}{16} \left(2a^3 +a^2 -a \right) \\ & = \frac{1}{64} \left(8a^3 +4a^2 -4a -1 + 1 \right) \\ & = \frac{1}{64} \end{aligned}

p + q = 1 + 64 = 65 \Rightarrow p + q = 1 + 64 = \boxed{65}

Moderator note:

After solving a problem, think about if there is a better way to present the solution. In this case, you had a great way of solving this problem, and didn't need to do all of the algebraic manipulation in the later half.

Since cos 2 π 7 , cos 4 π 7 , cos 6 π 7 \cos \frac{2\pi}{7} , \cos \frac{4\pi}{7} , \cos \frac{6\pi}{7} are the roots of 8 a 3 + 4 a 2 4 a 1 = 0 8a^3 + 4a^2 - 4a - 1 = 0 , hence ( cos 2 π 7 cos 4 π 7 cos 6 π 7 ) 2 = 1 8 2 = 1 64 (\cos \frac{2\pi}{7} \cos \frac{4\pi}{7} \cos \frac{6\pi}{7} ) ^2 = \frac{1}{8^2} = \frac{ 1}{64} .

Thanks, I didn't see that. It only applies to cos 2 π 7 \cos{\frac{2\pi}{7}} .

Chew-Seong Cheong - 6 years ago

We can solve this using complex numbers.

Let w 14 = 1 w k = e 2 π k 14 w^{14}=1 \Longrightarrow w^k=e^{\frac{2 \pi k}{14}} . Now, we have the following identity:

1 w k = 2 sin ( π k 14 ) |1-w^k|=2\sin \left(\dfrac{\pi k}{14}\right)

But first, note that we can factor the first expression:

w 14 1 = 0 ( w 7 + 1 ) ( w 7 1 ) = 0 w^{14}-1=0 \Longrightarrow (w^7+1)(w^7-1)=0

The first factor has roots w , w 3 , w 5 , w 7 , w 9 , w 11 w, w^3, w^5, w^7, w^9, w^{11} and w 13 w^{13} and the second one has roots w 2 , w 4 , w 6 , w 8 , w 10 , w 12 w^2, w^4, w^6, w^8, w^{10}, w^{12} and 1 1 .

Now, the expression we want is:

sin ( π 14 ) sin ( 3 π 14 ) sin ( 5 π 14 ) sin ( 7 π 14 ) sin ( 9 π 14 ) sin ( 11 π 14 ) sin ( 13 π 14 ) \sin{\left(\frac{\pi}{14} \right)} \sin{\left(\frac{3\pi}{14} \right)} \sin{\left(\frac{5\pi}{14} \right)} \sin{\left(\frac{7\pi}{14} \right)} \sin{\left(\frac{9\pi}{14} \right)} \sin{\left(\frac{11\pi}{14} \right)} \sin{\left(\frac{13\pi}{14} \right)}

But with the identity stated above, that becomes:

1 2 7 1 w 1 w 3 1 w 5 1 w 7 1 w 9 1 w 11 1 w 13 \dfrac{1}{2^7} |1-w||1-w^3||1-w^5||1-w^7||1-w^9||1-w^{11}||1-w^{13}|

Finally, using a b = a b |a||b|=|ab| :

1 2 7 ( 1 w ) ( 1 w 3 ) ( 1 w 5 ) ( 1 w 7 ) ( 1 w 9 ) ( 1 w 11 ) ( 1 w 13 ) \dfrac{1}{2^7} |(1-w)(1-w^3)(1-w^5)(1-w^7)(1-w^9)(1-w^{11})(1-w^{13})|

And the fact that, by the fundamental theorem of algebra, these factors represent the roots of P ( x ) = x 7 + 1 P(x)=x^7+1 as stated above, then we have:

1 2 7 P ( 1 ) = 1 2 7 1 7 + 1 = 1 64 \dfrac{1}{2^7} |P(1)|=\dfrac{1}{2^7}|1^7+1|=\boxed{\dfrac{1}{64}}

So, our final answer is 64 + 1 = 65 64+1=\boxed{65} .

WOW awesome!!!

Pi Han Goh - 5 years, 12 months ago
汶良 林
Jul 23, 2015

I like this solution a lot. Clever substitution.

Davy Ker - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...