Cutting the transversal!

Geometry Level 3

If the transversal, y = m r x y={ m }_{ r }x ; r =1,2,3 cut off equal intercepts on the transversal x + y = 1 x+y=1 , then 1 + m 1 1+{ m }_{ 1 } , 1 + m 2 1+{ m }_{ 2 } , 1 + m 3 1+{ m }_{ 3 } are in

Arithmetic Progression(AP) Geometric Progression(GP) None of these Harmonic Progression(HP)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Manish Dash
Jul 3, 2015

We know, y = m r x ( i ) x + y = 1 ( i i ) y={ m }_{ r }x\quad \quad ----(i)\\ x+y=1\quad -----(ii)

Solving the equations, we get

x = 1 1 + m r x=\frac { 1 }{ 1+{ m }_{ r } } , y = m r 1 + m r y=\frac { { m }_{ r } }{ 1+{ m }_{ r } }

Therefore points of intersection on transversal are ( 1 1 + m 1 , m 1 1 + m 1 ) (\frac { 1 }{ 1+{ m }_{ 1 } } ,\frac { { m }_{ 1 } }{ 1+{ m }_{ 1 } } ) , ( 1 1 + m 2 , m 2 1 + m 2 ) (\frac { 1 }{ 1+{ m }_{ 2 } } ,\frac { { m }_{ 2 } }{ 1+{ m }_{ 2 } } ) and ( 1 1 + m 3 , m 3 1 + m 3 ) (\frac { 1 }{ 1+{ m }_{ 3 } } ,\frac { { m }_{ 3 } }{ 1+{ m }_{ 3 } } ) .

By distance formula, we get

( 1 1 + m 1 1 1 + m 2 ) 2 + ( m 1 1 + m 1 m 2 1 + m 2 ) 2 = ( 1 1 + m 2 1 1 + m 3 ) 2 + ( m 2 1 + m 2 m 3 1 + m 3 ) 2 { (\frac { 1 }{ 1+{ m }_{ 1 } } -\frac { 1 }{ 1+{ m }_{ 2 } } ) }^{ 2 }+{ (\frac { { m }_{ 1 } }{ 1+{ m }_{ 1 } } -\frac { { m }_{ 2 } }{ 1+{ m }_{ 2 } } ) }^{ 2 }={ { (\frac { 1 }{ 1+{ m }_{ 2 } } - }\frac { 1 }{ 1+{ m }_{ 3 } } ) }^{ 2 }+{ (\frac { { m }_{ 2 } }{ 1+{ m }_{ 2 } } - }\frac { { m }_{ 3 } }{ 1+{ m }_{ 3 } } )^{ 2 }

= > m 2 m 1 1 + m 1 = m 3 m 2 1 + m 3 =>\quad \frac { { m }_{ 2 }-{ m }_{ 1 } }{ 1+{ m }_{ 1 } } =\frac { { m }_{ 3 }-{ m }_{ 2 } }{ 1+{ m }_{ 3 } }

(OR)

= > 1 + m 2 1 + m 1 1 = 1 1 + m 2 1 + m 3 \\ =>\quad \frac { 1+{ m }_{ 2 } }{ 1+{ m }_{ 1 } } -1=1-\frac { 1+{ m }_{ 2 } }{ 1+{ m }_{ 3 } }

= > 1 + m 2 1 + m 1 + 1 + m 2 1 + m 3 = 2 =>\quad \frac { 1+{ m }_{ 2 } }{ 1+{ m }_{ 1 } } +\frac { 1+{ m }_{ 2 } }{ 1+{ m }_{ 3 } } =2

1 + m 2 = 2 ( 1 + m 1 ) ( 1 + m 3 ) ( 1 + m 1 ) + ( 1 + m 3 ) \\ 1+{ m }_{ 2 }=\quad \frac { 2(1+{ m }_{ 1 })(1+{ m }_{ 3 }) }{ (1+{ m }_{ 1 })+(1+{ m }_{ 3 }) }

1 + m 1 , 1 + m 2 , 1 + m 3 a r e i n H P \therefore \quad 1+{ m }_{ 1 },1+{ m }_{ 2 },1+{ m }_{ 3 }\quad are\quad in\quad HP\quad \quad

Moderator note:

Is there a geometric interpretation of this fact? For example, what would 1 + m i 1 + m_i correspond to?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...