If the transversal, ; r =1,2,3 cut off equal intercepts on the transversal , then , , are in
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know, y = m r x − − − − ( i ) x + y = 1 − − − − − ( i i )
Solving the equations, we get
x = 1 + m r 1 , y = 1 + m r m r
Therefore points of intersection on transversal are ( 1 + m 1 1 , 1 + m 1 m 1 ) , ( 1 + m 2 1 , 1 + m 2 m 2 ) and ( 1 + m 3 1 , 1 + m 3 m 3 ) .
By distance formula, we get
( 1 + m 1 1 − 1 + m 2 1 ) 2 + ( 1 + m 1 m 1 − 1 + m 2 m 2 ) 2 = ( 1 + m 2 1 − 1 + m 3 1 ) 2 + ( 1 + m 2 m 2 − 1 + m 3 m 3 ) 2
= > 1 + m 1 m 2 − m 1 = 1 + m 3 m 3 − m 2
(OR)
= > 1 + m 1 1 + m 2 − 1 = 1 − 1 + m 3 1 + m 2
= > 1 + m 1 1 + m 2 + 1 + m 3 1 + m 2 = 2
1 + m 2 = ( 1 + m 1 ) + ( 1 + m 3 ) 2 ( 1 + m 1 ) ( 1 + m 3 )
∴ 1 + m 1 , 1 + m 2 , 1 + m 3 a r e i n H P