689

Algebra Level 2

Compute the square root of ( 689 ) ( 690 ) ( 691 ) ( 692 ) + 1 (689)(690)(691)(692)+1 without using a calculator.


The answer is 476789.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

x ( x + 1 ) ( x + 2 ) ( x + 3 ) + 1 = ( x 2 + 3 x ) ( x 2 + 3 x + 2 ) + 1 = ( x 2 + 3 x ) ( x 2 + 3 x + 1 ) + x 2 + 3 x + 1 = \sqrt { x\left( x+1 \right) \left( x+2 \right) \left( x+3 \right) +1 } =\sqrt { \left( { x }^{ 2 }+3x \right) \left( { x }^{ 2 }+3x+2 \right) +1 } =\sqrt { \left( { x }^{ 2 }+3x \right) \left( { x }^{ 2 }+3x+1 \right) +{ x }^{ 2 }+3x+1 } = = ( x 2 + 3 x + 1 ) ( x 2 + 3 x + 1 ) = ( x 2 + 3 x + 1 ) 2 = x 2 + 3 x + 1 = x = 689 689 2 + 3 689 + 1 = 474721 + 2067 + 1 = 476789 =\sqrt { \left( { x }^{ 2 }+3x+1 \right) \left( { x }^{ 2 }+3x+1 \right) } =\sqrt { { \left( { x }^{ 2 }+3x+1 \right) }^{ 2 } } =\left| { x }^{ 2 }+3x+1 \right| \overset { x=689 }{ = } \left| { 689 }^{ 2 }+3\cdot 689+1 \right| =\left| 474721+2067+1 \right| =\boxed { 476789 }

N = ( 689 ) ( 690 ) ( 691 ) ( 692 ) + 1 Let a = 690.5 = ( a 3 2 ) ( a 1 2 ) ( a + 1 2 ) ( a + 3 2 ) + 1 = ( a 2 9 4 ) ( a 2 1 4 ) + 1 = a 4 5 2 a 2 + 25 16 = ( a 2 5 4 ) 2 = 47678 9 2 \begin{aligned} N & = (689)(690)(691)(692) + 1 & \small \color{#3D99F6} \text{Let }a = 690.5 \\ & = \left(a-\frac 32 \right) \left(a-\frac 12 \right) \left(a+\frac 12 \right) \left(a+\frac 32 \right) + 1 \\ & = \left(a^2 -\frac 94 \right) \left(a^2 -\frac 14 \right) + 1 \\ & = a^4 -\frac 52 a^2 +\frac {25}{16} \\ & = \left(a^2 - \frac 54\right)^2 \\ & = 476789^2 \end{aligned}

Therefore, N = 476789 \sqrt N = \boxed{476789} .

Mr. India
Apr 5, 2019

( m 1 ) ( m ) ( m + 1 ) ( m + 2 ) + 1 = a 2 (m-1)(m)(m+1)(m+2)+1=a^2

Take 1 to RHS and combine (1,4),(2,3) terms

( m 2 + m ) ( m 2 + m 2 ) = ( a + 1 ) ( a 1 ) (m^2+m)(m^2+m-2)=(a+1)(a-1)

Difference between the terms in LHS and RHS both is 2 2 . So we can conclude that :

( m 2 + m = a + 1 ) , ( m 2 + m 2 = a 1 ) (m^2+m=a+1),(m^2+m-2=a-1)

In question, m = 690 m=690 and a a is to be found

So, ( 690 ) 2 + 690 = a + 1 (690)^2+690=a+1

476790 = a + 1 476790=a+1 Or,

a = 476789 \boxed{a=476789}

( a 2 ) ( a 1 ) a ( a + 1 ) + 1 = ( a 2 2 a ) ( a 2 1 ) + 1 = a 4 2 a 3 a 2 + 2 a + 1 = ( a 2 a 1 ) 2 (a-2)(a-1)a(a+1)+1=(a^2-2a)(a^2-1)+1=a^4-2a^3-a^2+2a+1=(a^2-a-1)^2 . For a = 691 a=691 , the value of the square root of this expression is ( 69 1 2 ) 691 1 = 476789 (691^2)-691-1=476789 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...