Cyclic Cube Root

Let a , b , c a,b,c be integers satisfying the equations

a + b + c + 1 = 2014 a+b+c+1=2014

c y c a b + 1 3 = 3 \sum_{cyc}\sqrt[3]{a-b+1}=3

Find min min ( a , b , c ) \text{min }\text{min}(a,b,c)

Details and Assumptions

min min ( a , b , c ) \text{min }\text{min}(a,b,c) means the minimum of all possible minimums of a , b , c a,b,c where a , b , c a,b,c ranges over all possible solutions to the equations.

c y c a b + 1 3 = a b + 1 3 + b c + 1 3 + c a + 1 3 \displaystyle\sum_{cyc}\sqrt[3]{a-b+1}=\sqrt[3]{a-b+1}+\sqrt[3]{b-c+1}+\sqrt[3]{c-a+1}


The answer is 608.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ariel Gershon
Jul 23, 2014

Let x = a b + 1 3 , y = b c + 1 3 , z = c a + 1 3 x = \sqrt[3]{a-b+1}, y = \sqrt[3]{b-c+1}, z = \sqrt[3]{c-a+1} . Observe that x , y , z x,y,z are real numbers such that x + y + z = 3 x+y+z=3 , x 3 + y 3 + z 3 = 3 x^3+y^3+z^3=3 and each of x 3 , y 3 , z 3 x^3, y^3, z^3 are integers. Now I am not sure how to solve this without first proving that x , y , z x,y,z must be integers. It took me way too long to prove this, and I'll post my proof of it below if anyone wants to see it.

But for now, let's assume that x , y , z x,y,z are integers. Then: ( x + y + z ) 3 ( x 3 + y 3 + z 3 ) = 3 3 3 = 24 (x+y+z)^3 - (x^3 + y^3 + z^3) = 3^3 - 3 = 24 3 x 2 y + 3 x 2 + 3 y 2 x + 3 y 2 z + 3 z 2 x + 3 z 2 y + 6 x y z = 24 3x^2 y + 3x^2 + 3y^2 x + 3y^2 z + 3z^2 x + 3z^2 y + 6xyz = 24

Luckily, the left-hand side factors nicely into 3 ( x + y ) ( y + z ) ( x + z ) = 24 3(x+y)(y+z)(x+z) = 24 . Now use the fact that x + y + z = 3 x+y+z=3 and we get: ( x + y ) ( 3 x ) ( 3 y ) = 8 (x+y)(3-x)(3-y) = 8 If we do a little case checking, we see that the only solutions are ( x , y ) = ( 1 , 1 ) , ( 4 , 4 ) , ( 4 , 5 ) , ( 5 , 4 ) (x,y) = (1,1),(4,4),(4,-5),(-5,4) .

Therefore, there are essentially two possibilities: { x , y , z } = { 1 , 1 , 1 } \{x,y,z\} = \{1,1,1\} and { x , y , z } = { 4 , 4 , 5 } \{x,y,z\} = \{4,4,-5\} . Now it’s fairly simple to show that a = 671 + x 3 z 3 3 , b = 671 + y 3 x 3 3 , c = 671 + z 3 y 3 3 a = 671 + \frac{x^3 - z^3}{3}, b = 671 + \frac{y^3 - x^3}{3}, c = 671 + \frac{z^3 - y^3}{3} Therefore, in the first case, we get { a , b , c } = { 671 , 671 , 671 } \{a,b,c\} = \{671,671,671\} , and in the second case we get { a , b , c } = { 734 , 671 , 608 } \{a,b,c\} = \{734,671,608\} . The smallest of these is 608. Therefore, m i n { m i n { a , b , c } } = 608 min\{min\{a,b,c\}\} = \boxed{608} .

Can you add your proof that x , y , z x, y, z are integers?

Calvin Lin Staff - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...