Cyclic Doesn't Mean Symmetric!

Algebra Level 1

Positive reals a , b , c a,b,c satisfy a b c = 1 abc=1 . Find the minimum value of

1 + a b 1 + a + 1 + b c 1 + b + 1 + c a 1 + c . \dfrac{1+ab}{1+a}+\dfrac{1+bc}{1+b}+\dfrac{1+ca}{1+c}.

Enter your answer correct to 3 decimal places.


The answer is 3.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

1 + a b 1 + a + 1 + b c 1 + b + 1 + c a 1 + c \frac{1+ab}{1+a} + \frac{1+bc}{1+b} + \frac{1+ca}{1+c}

= 1 + 1 c 1 + a + 1 + 1 a 1 + b + 1 + 1 b 1 + c =\frac{1+\frac{1}{c}}{1+a} + \frac{1+\frac{1}{a}}{1+b} + \frac{1+\frac{1}{b}}{1+c}

c + 1 c ( 1 + a ) + a + 1 a ( 1 + b ) + b + 1 b ( 1 + c ) 3 ( c + 1 c ( 1 + a ) × a + 1 a ( 1 + b ) × b + 1 b ( 1 + c ) ) 1 3 \Rightarrow \frac{c+1}{c(1+a)} + \frac{a+1}{a(1+b)} + \frac{b+1}{b(1+c)} \geq 3(\frac{c+1}{c(1+a)} \times \frac{a+1}{a(1+b)} \times \frac{b+1}{b(1+c)})^\frac{1}{3} [AM-GM inequality]

c + 1 c ( 1 + a ) + a + 1 a ( 1 + b ) + b + 1 b ( 1 + c ) 3 ( 1 a b c ) 1 3 \Rightarrow \frac{c+1}{c(1+a)} + \frac{a+1}{a(1+b)} + \frac{b+1}{b(1+c)} \geq 3(\frac{1}{abc})^\frac{1}{3}

c + 1 c ( 1 + a ) + a + 1 a ( 1 + b ) + b + 1 b ( 1 + c ) 3 \Rightarrow \frac{c+1}{c(1+a)} + \frac{a+1}{a(1+b)} + \frac{b+1}{b(1+c)} \geq \boxed{3}

I also use AM-GM :D

engki mai putra - 5 years, 6 months ago

In the problem, you see where it says, "Round your answer to 3 \text{3} decimal places."? Ironically, 3 \text{3} is the correct answer!

Bloons Qoth - 4 years, 5 months ago

I think my solution is a bit more short......by rearrangement inequality we can bring 1+bc over 1+a and 1+ac over 1+b and 1+ab over 1+c ......then substituting 1=abc in numerators we get (after solving) ab+bc+ca......now applying AM-GM will yield ab+bc+ca greater than or equal to 3.......which is the answer

Ankur Verma - 3 years ago
Chew-Seong Cheong
Nov 26, 2015

Since a a , b b and c c are positive reals, we can use AM-GM inequality as follows:

1 + a b 1 + a + 1 + b c 1 + b + 1 + c a 1 + c 3 1 + a b 1 + a ˙ 1 + b c 1 + b ˙ 1 + c a 1 + c 3 As a b c = 1 3 a b c + a b 1 + a ˙ a b c + b c 1 + b ˙ a b c + c a 1 + c 3 3 a b ( c + 1 ) 1 + a ˙ b c ( a + 1 ) 1 + b ˙ c a ( b + 1 ) 1 + c 3 3 ( a b c ) 2 3 = 3 \begin{aligned} \frac{1+ab}{1+a} + \frac{1+bc}{1+b} + \frac{1+ca}{1+c} & \ge 3 \sqrt[3]{\frac{\color{#3D99F6}{1}+ab}{1+a} \dot{} \frac{\color{#3D99F6}{1}+bc}{1+b} \dot{} \frac{\color{#3D99F6}{1}+ca}{1+c}} \quad \quad \small \color{#3D99F6}{\text{As } abc = 1} \\ & \ge 3 \sqrt[3]{\frac{\color{#3D99F6}{abc}+ab}{1+a} \dot{} \frac{\color{#3D99F6}{abc}+bc}{1+b} \dot{} \frac{\color{#3D99F6}{abc}+ca}{1+c}} \\ & \ge 3 \sqrt[3]{\frac{ab(c+1)}{1+a} \dot{} \frac{bc(a+1)}{1+b} \dot{} \frac{ca(b+1)}{1+c}} \\ & \ge 3 (abc)^{\frac{2}{3}} = \boxed{3} \end{aligned}

Did the same XD!

Shishir Shahi - 3 years, 11 months ago

A useful transformation for constraints like abc = 1 is a = x/y, b = y/z, c = z/x.

The first term, (1 + ab)/(1+a) = y(z+x)/z(y+x)

Since the R.H.S is cyclic in its original form, it's quite easy to see that the AM-GM inequality yields a 1 on the right side of the inequality.

Hence, the minimum value of the expression is 3.

What do you mean by "cyclic in its original form"?

N L - 3 years, 11 months ago

a=1, b=1 and c=1 if say that minimum

Kamran Hasilov - 4 years, 4 months ago
Poca Poca
Mar 30, 2018

1 + a b 1 + a + 1 + b c 1 + b + 1 + c a 1 + c \dfrac{1+ab}{1+a}+\dfrac{1+bc}{1+b}+\dfrac{1+ca}{1+c}

= a b c + a b 1 + a + a b c + b c 1 + b + a b c + c a 1 + c =\dfrac{abc+ab}{1+a}+\dfrac{abc+bc}{1+b}+\dfrac{abc+ca}{1+c}

= a b ( 1 + c ) 1 + a + b c ( 1 + a ) 1 + b + a c ( 1 + b ) 1 + c =\dfrac{ab(1+c)}{1+a}+\dfrac{bc(1+a)}{1+b}+\dfrac{ac(1+b)}{1+c}

3 a b ( 1 + c ) 1 + a b c ( 1 + a ) 1 + b a c ( 1 + b ) 1 + c 3 = 3 \geq 3\sqrt[3]{\dfrac{ab(1+c)}{1+a}\dfrac{bc(1+a)}{1+b}\dfrac{ac(1+b)}{1+c}}=\boxed{3}

Gagan Reddy
Sep 25, 2017

on simplifying the given equation we get, numerator = 6+3a+3b+3c+2/a+2/b+2/c+a/b+b/c+c/a denominator = a+b+c+1/a+1/b+1/c+2 now, numerator = 1+1+1+1+1+1+a+a+a+b+b+b+c+c+c+1/a+1/a+1/b+1/b+1/c+1/c+a/b+b/c+c/a denominator = a+b+c+1/a+1/b+1/c+1+1 AM>=GM numerator n/24 >= 1 ("n" is numerator) this implies n>= 24 denominator d/8>=1 ("d" is denominator) this implies d>=8 THEREFORE, n/d is greater than or equal to 24/8 this implies n/d >= 3 HENCE proved that the least value of the given question is equal to 3 SORRY I DON'T KNOW HOW TO WRITE PROPERLY

Les Schumer
Sep 20, 2019

1 + a b 1 + a \frac{1+ab}{1+a} + 1 + b c 1 + b \frac{1+bc}{1+b} + 1 + c a 1 + c \frac{1+ca}{1+c}

Given abc=1

=> 1 + a b a b c 1 + a \frac{1+\frac{ab}{abc}}{1+a} + 1 + b c a b c 1 + b \frac{1+\frac{bc}{abc}}{1+b} + 1 + c a a b c 1 + c \frac{1+\frac{ca}{abc}}{1+c}

=> 1 + c c ( 1 + a ) \frac{1+c}{c(1+a)} + 1 + a a ( 1 + b ) \frac{1+a}{a(1+b)} + 1 + b b ( 1 + c ) \frac{1+b}{b(1+c)} \geq 3 1 a b c 1 + c 1 + a 1 + c 1 + b 1 + b 1 + c 3 \sqrt[3]{ \frac{1}{abc} \frac{1+c}{1+a} \frac{1+c}{1+b} \frac{1+b}{1+c} } By AM-GM Inequality

Therefore 1 + a b 1 + a \frac{1+ab}{1+a} + 1 + b c 1 + b \frac{1+bc}{1+b} + 1 + c a 1 + c \frac{1+ca}{1+c} \geq 3 1 3 \sqrt[3]{1} \geq 3 \fbox{3}

Emmanuel Torres
Feb 9, 2017

Assume a, b, and c are 1. The expression has some kind of symmetry between them. 1 + 1 + 1 = 3.

Ayyyyy, yep. Did the same!!

Felix Belair - 1 week, 6 days ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...