Cyclic Inequality!

Algebra Level 5

x y 2 + z 2 + y z 2 + x 2 + z x 2 + y 2 > A \large{\dfrac{x}{\sqrt{y^2 + z^2}} + \dfrac{y}{\sqrt{z^2 + x^2}} + \dfrac{z}{\sqrt{x^2 + y^2}} > A} If the largest real number A A such that the above inequality is true for all possible positive real numbers x , y , z x,y,z can be expressed as α β \dfrac{\alpha}{\sqrt{\beta}} , where α , β \alpha, \beta are positive integers, find the minimum value of α β \alpha \beta .


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Jul 28, 2015

We claim that A = 2 A = 2 .

Let f ( x , y , z ) = x y 2 + z 2 + y z 2 + x 2 + z x 2 + y 2 f(x,y,z) = \dfrac{x}{\sqrt{y^2 + z^2}} + \dfrac{y}{\sqrt{z^2 + x^2}} + \dfrac{z}{\sqrt{x^2 + y^2}} .

We'll show that f ( x , y , z ) > 2 f(x, y, z) > 2 . Since f ( x , y , z ) 2 as x y and z 0 f(x, y, z) \to 2 \text{ as } x \to y \text{ and } z \to 0 , the lower bound 2 is sharp. Without loss of generality, assume that x y z x \geq y \geq z . Since by the AM-GM Inequality, we have

z 2 + x 2 y 2 + z 2 + y 2 + z 2 z 2 + x 2 2 \dfrac{\sqrt{z^2 + x^2}}{\sqrt{y^2 + z^2}} + \dfrac{\sqrt{y^2 + z^2}}{\sqrt{z^2 + x^2}} \geq 2

It suffices to show that

f ( x , y , z ) > z 2 + x 2 y 2 + z 2 + y 2 + z 2 z 2 + x 2 f(x,y,z) > \dfrac{\sqrt{z^2 + x^2}}{\sqrt{y^2 + z^2}} + \dfrac{\sqrt{y^2 + z^2}}{\sqrt{z^2 + x^2}}

or equivalently,

z x 2 + y 2 > z 2 + x 2 x y 2 + z 2 + y 2 + z 2 y z 2 + x 2 \dfrac{z}{\sqrt{x^2 + y^2}} > \dfrac{\sqrt{z^2 + x^2} - x}{\sqrt{y^2 + z^2}} + \dfrac{\sqrt{y^2 + z^2} - y}{\sqrt{z^2 + x^2}}

By simple algebra, this is easily seen to be equivalent to:

z y 2 + z 2 ( z 2 + x 2 + x ) + z z 2 + x 2 ( y 2 + z 2 + y ) < 1 x 2 + y 2 .... (1) \dfrac{z}{\sqrt{y^2 + z^2}(\sqrt{z^2 + x^2} + x)} + \dfrac{z}{\sqrt{z^2 + x^2}(\sqrt{y^2 + z^2} + y)} < \dfrac{1}{\sqrt{x^2 + y^2}} \text{ .... (1) }

Since y 2 + z 2 2 z 2 = 2 z , z 2 + x 2 > x and 2 x x 2 + y 2 \sqrt{y^2 + z^2} \geq \sqrt{2z^2} = \sqrt{2}z, \sqrt{z^2 + x^2} > x \text{ and } \sqrt{2}x \geq \sqrt{x^2 + y^2} , we have:

z y 2 + z 2 ( z 2 + x 2 + x ) < z 2 z ( x + x ) = 1 2 2 x 1 2 x 2 + y 2 \dfrac{z}{\sqrt{y^2 + z^2}(\sqrt{z^2 + x^2} + x)} < \dfrac{z}{\sqrt{2}z(x+x)} = \dfrac{1}{2\sqrt{2}x} \leq \dfrac{1}{2\sqrt{x^2 + y^2}}

Thus to establish (1), it remains to show that:

z z 2 + x 2 ( y 2 + z 2 + y ) < 1 2 x 2 + y 2 \dfrac{z}{\sqrt{z^2 + x^2}(\sqrt{y^2 + z^2} + y)} < \dfrac{1}{2\sqrt{x^2 + y^2}}

or equivalently:

2 z y 2 + z 2 + y < z 2 + x 2 x 2 + y 2 \dfrac{2z}{\sqrt{y^2 + z^2} + y} < \sqrt{\dfrac{z^2 + x^2}{x^2 + y^2}}

Since

z 2 + x 2 x 2 + y 2 = 1 y 2 z 2 x 2 + y 2 \dfrac{z^2 + x^2}{x^2 + y^2} = 1 - \dfrac{y^2 - z^2}{x^2 + y^2}

which is a non-decreasing function of x x , we have:

z 2 + x 2 x 2 + y 2 z 2 + y 2 2 y 2 \dfrac{z^2 + x^2}{x^2 + y^2} \geq \dfrac{z^2 + y^2}{2y^2}

and it suffices to show that

z 2 + y 2 2 y > 2 x z 2 + y 2 + y \dfrac{\sqrt{z^2 + y^2}}{\sqrt{2}y} > \dfrac{2x}{\sqrt{z^2 + y^2} + y}

or equivalently:

z 2 + y 2 + y z 2 + y 2 2 y z .... (2) z^2 + y^2 + y\sqrt{z^2 + y^2} \geq 2yz \text{ .... (2)}

Since y 2 + z 2 2 y z y^2 + z^2 \geq 2yz , we have

z 2 + y 2 + y z 2 + y 2 2 y z + y 2 z 2 = ( 2 + 2 ) y z > 2 2 y z z^2 + y^2 + y\sqrt{z^2 + y^2} \geq 2yz + y\sqrt{2z^2} = (2 + \sqrt{2})yz > 2\sqrt{2}yz

and thus (2) holds. This completes the proof.

@Ajay Jain It's strictly greater than.

Anay Aggarwal - 2 months, 1 week ago

how can its be largest . I think correct ans is 3/root2 when x=y=z .2 is largest integral value only.

Ajay Jain - 5 years, 10 months ago

Log in to reply

Quoting @Calvin Lin Sir:


"It is a common misconception that a cyclic inequality achieves its minimium (and maximium!) when all three are equal. See Inequalities with strange equality conditions for more examples."

Satyajit Mohanty - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...