Cyclic polygons. (See if you can do this without a calculating aid)

Geometry Level 5

The area of an n-sided polygon inscribed inside a unit circle is represented by A n , A_n,

If A 2015 = a \lfloor A_{2015} \rfloor = a and if b b is the minimum value of n n such that

A b = A 99 \lceil A_b \rceil= \lceil A_{99} \rceil

then find a + b a+b .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
May 10, 2015

A n = n 2 sin ( 2 π n ) . A s n t e n d s t o i n f i n i t y , A n t e n d s t o 3.141... S o , A n = 3. B u t w h e n d o e s t h i s s t a r t h a p p e n i n g ? S e t A n = 3 a n d w e g e t n 6. A l s o n o t i c e t h a t t h e R H S i s r a t i o n a l . S o , w e n e e d t o g e t t h e m i n i m u m v a l u e o f n s u c h t h a t 6 / n i s r a t i o n a l a n d l e s s t h a n 1. S o , w e g e t n = 12. F o r n 13 , w e h a v e A n = 4 = A 99 . S o , b = 13 a n d a = 3. a + b = 16. A_{ n }=\frac { n }{ 2 } \sin (\frac { 2\pi }{ n } ).\\ As\quad n\quad tends\quad to\quad infinity,\quad A_{ n }\quad tends\quad to\quad 3.141...\\ So,\quad \left\lfloor A_{ n } \right\rfloor =3.\quad But\quad when\quad does\quad this\quad start\quad happening?\\ Set\quad A_{ n }=3\quad and\quad we\quad get\quad n\ge 6.\quad Also\quad notice\quad that\quad the\quad RHS\\ is\quad rational.\quad So,\quad we\quad need\quad to\quad get\quad the\quad minimum\quad value\quad of\\ n\quad such\quad that\quad 6/n\quad is\quad rational\quad and\quad less\quad than\quad 1.\quad So,\quad we\quad get\\ n=12.\quad For\quad n\ge 13,\quad we\quad have\quad \left\lceil A_{ n } \right\rceil \quad =\quad 4\quad =\quad \left\lceil A_{ 99 } \right\rceil .\quad \\ So,\quad b=13\quad and\quad a=3.\quad a+b=\boxed { 16. }

I did not quite follow how you got n=12. The minimum value of n for which 6/n is rational and less than 1 is n=7.

Pavan Kumar Vaitheeswaran - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...