Cyclic Quadrilateral 2018

Geometry Level 5

In cyclic quadrilateral A B C D ABCD with A B = A D = 49 AB = AD = 49 and A C = 73 AC = 73 , let I I and J J denote the incenters of triangles A B D ABD and C B D CBD . If diagonal B D BD bisects I J IJ , find the length of I J IJ .


The answer is 46.517.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 8, 2018

Suppose that A O B = 2 θ \angle AOB = 2\theta and A O C = 2 ϕ \angle AOC =2\phi . Let R R be the outradius. Then 49 = A B = 2 R sin θ 49 = AB = 2R\sin\theta and 73 = A C = 2 R sin ϕ 73 = AC = 2R\sin\phi , and hence 73 sin θ = 49 sin ϕ 73\sin\theta \; = \; 49\sin\phi Since I J IJ is bisected by B D BD , we deduce that the triangles A B D ABD and C B D CBD have the same inradius r r . Using Carnot's Theorem that the sum of the inradius and the outradius of a triangle is equal to the sum of the (directed) distances to the three sides of the outcentre, we deduce (considering the two ways to express R + r R+r in the triangles A B D ABD and C B D CBD ), R cos θ + R cos θ + R cos ( π 2 θ ) = R cos 2 θ + R cos ( ϕ θ ) + R cos ( π ϕ θ ) 2 cos θ cos 2 θ = cos 2 θ + cos ( ϕ θ ) cos ( ϕ + θ ) = cos 2 θ + 2 sin ϕ sin θ cos θ cos 2 θ = sin ϕ sin θ 49 ( cos θ cos 2 θ ) = 73 sin 2 θ 25 cos 2 θ 49 cos θ + 24 = 0 ( 25 cos θ 24 ) ( cos θ 1 ) = 0 \begin{aligned} R\cos\theta + R\cos\theta + R\cos(\pi-2\theta) & = \; R\cos2\theta + R\cos(\phi-\theta) + R\cos(\pi-\phi-\theta) \\ 2\cos\theta - \cos2\theta & = \; \cos2\theta + \cos(\phi-\theta) - \cos(\phi+\theta) \; = \; \cos2\theta + 2\sin\phi\sin\theta \\ \cos\theta - \cos2\theta & = \; \sin\phi\sin\theta \\ 49(\cos\theta - \cos2\theta) & = \; 73\sin^2\theta \\ 25\cos^2\theta -49\cos\theta + 24 & = \; 0 \\ (25\cos\theta - 24)(\cos\theta - 1) & = \; 0 \end{aligned} Since the case θ = 0 \theta=0 is not possible, we deduce that cos θ = 24 25 \cos\theta = \tfrac{24}{25} , sin θ = 7 25 \sin\theta = \tfrac{7}{25} , and hence sin ϕ = 73 175 \sin\phi = \tfrac{73}{175} and R = 175 2 R = \tfrac{175}{2} .

The rest is just calculation. We use the fact that the incentre I I of a triangle with vertices A , B , C A,B,C and side lengths a , b , c a,b,c (named in the normal manner) as has position vector O I = 1 a + b + c [ a O A + b O B + c O C ] \overrightarrow{OI} \; = \; \frac{1}{a+b+c}\big[a \overrightarrow{OA} + b\overrightarrow{OB} + c\overrightarrow{OC}\big] Setting up a coordinate system with the outcentre O O as the origin, and A A lying on the positive x x -axis, we have A : ( 175 2 , 0 ) B : ( 3689 50 , 1176 25 ) C : ( 19967 350 , 292 1581 175 ) D : ( 3689 50 , 1176 25 ) A\;: \;(\tfrac{175}{2},0) \hspace{1cm} B\;:\; (\tfrac{3689}{50},\tfrac{1176}{25}) \hspace{1cm} C\;:\; (\tfrac{19967}{350}, \tfrac{292 \sqrt{1581}}{175})\hspace{1cm} D\;:\;(\tfrac{3689}{50},-\tfrac{1176}{25}) and so we obtain the incentres I : ( 161 2 , 0 ) J : ( 3353 50 , 28 1581 25 ) I \;:\; ( \tfrac{161}{2},0) \hspace{2cm} J \;:\; (\tfrac{3353}{50}, \tfrac{28 \sqrt{1581}}{25}) and hence I J = 28 69 5 = 46.51709363 IJ \; = \; \frac{28 \sqrt{69}}{5} \; = \; \boxed{46.51709363} There may be a neater way to do this using the Japanese Theorems about cyclic quadrilaterals...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...