#Cyclic quadrilateral

Geometry Level 3

In a cyclic quadrilateral A B C D ABCD , A B = 3 AB=3 , B C = 4 BC=4 , C D = 5 CD=5 , D A = 6 DA=6 , and A E AE is a diameter of its circumcircle. If sin C A E = m n \sin{\angle{CAE}}=\dfrac mn , where m m and n n are positive coprime integers, enter m + n . m+n.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the side lengths of quadrilateral A B C D ABCD be a = 3 a=3 , b = 4 b=4 , c = 5 c=5 , and d = 6 d=6 . By Ptolemy's theorem , the diagonal A C AC :

q = ( a c + b d ) ( a d + b c ) a b + c d = 247 7 q = \sqrt{\frac {(ac+bd)(ad+bc)}{ab+cd}} = \sqrt {\frac {247}7}

The diameter A E AE of a circumcircle is given by

D = A C sin B = q sin B sin B = q D D = \frac {AC}{\sin B} = \frac q{\sin B} \implies \sin B = \frac qD

Since A E AE is a diameter, by Thales theorem we have A C E = 9 0 \angle ACE = 90^\circ . Let C A E = θ \angle CAE = \theta . Then

sin θ = C E A E = A E 2 A C 2 A E = D 2 q 2 D = 1 ( q D ) 2 = 1 sin 2 B = cos B Since B is obtuse, \begin{aligned} \sin \theta & = \frac {CE}{AE} = \frac {\sqrt{AE^2-AC^2}}{AE} \\ & = \frac {\sqrt{D^2-q^2}}D = \sqrt{1-\left(\frac qD\right)^2} \\ & = \sqrt{1-\sin^2 B} = \blue - \cos B & \small \blue{\text{Since }\angle B \text{ is obtuse,}} \end{aligned}

By cosine rule ,

q 2 = a 2 + b 2 2 a b cos B cos B = a 2 + b 2 q 2 2 a b = 7 ( 3 2 + 4 2 ) 247 2 3 4 7 = 3 7 sin θ = cos B = 3 7 \begin{aligned} q^2 & = a^2 + b^2 - 2ab \cos B \\ \implies \cos B & = \frac {a^2 + b^2 - q^2}{2ab} = \frac {7(3^2+4^2)-247}{2\cdot 3 \cdot 4 \cdot 7} = - \frac 37 \\ \implies \sin \theta & = - \cos B = \frac 37 \end{aligned}

Therefore m + n = 3 + 7 = 10 m+n = 3+7 = \boxed {10} .

David Vreken
May 9, 2021

Draw the center O O and A O C \triangle AOC :

By the properties of a cyclic quadrilateral , cos D = a 2 + d 2 b 2 c 2 2 ( a d + b c ) = 5 2 + 6 2 3 2 4 2 2 ( 5 6 + 3 4 ) = 3 7 \cos \angle D = \cfrac{a^2 + d^2 - b^2 - c^2}{2(ad + bc)} = \cfrac{5^2 + 6^2 - 3^2 - 4^2}{2(5 \cdot 6 + 3 \cdot 4)} = \cfrac{3}{7} .

As a central angle intercepting the same arc of inscribed angle D \angle D , A O C = 2 D \angle AOC = 2\angle D .

As a base angle of isosceles triangle A O C \triangle AOC , C A E = 1 2 ( 180 ° A O C ) = 90 ° D \angle CAE = \frac{1}{2}(180° - \angle AOC) = 90° - \angle D .

Therefore, sin C A E = sin ( 90 ° D ) = cos D = 3 7 \sin \angle CAE = \sin (90° - \angle D) = \cos \angle D = \cfrac{3}{7} , so m = 3 m = 3 , n = 7 n = 7 , and m + n = 10 m + n = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...