Cylinders and Stacked Spheres.

Level 2

Let V c V_{c} be the volume of the largest right circular cone that can be inscribed in a sphere of radius R R .

Each sphere inscribed in the right circular cone above are tangent to each other and stacked vertically and is extended to an infinite number of inscribed spheres. Let V s ( n ) V_{s}(n) be the volume of the n n th stacked sphere and V T = n = 1 V s ( n ) V_{T} = \displaystyle\sum_{n = 1}^{\infty} V_{s}(n) .

If V T R 3 = a b π c d \dfrac{V_{T}}{R^3} = \dfrac{a^{b}\pi}{c^{d}} . where a , b , c a,b,c and d d are coprime positive integers, ,find a + b + c a + b + c .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 22, 2019

Let V c = 1 3 π r 2 H 1 V_{c} = \dfrac{1}{3}\pi r^2H_{1} and V s = 4 3 π R 3 V_{s} = \dfrac{4}{3}\pi R^3 .

r 2 + H 1 2 2 H 1 R + R 2 = R 2 r 2 = 2 H 1 R H 1 2 r^2 + H_{1}^2 - 2H_{1}R + R^2 = R^2 \implies r^2 = 2H_{1}R - H_{1}^2 \implies

V c = 1 3 π ( 2 H 1 2 R H 1 3 ) d V c d H 1 = π 3 ( 4 H 1 R 3 H 1 2 ) V_{c} = \dfrac{1}{3}\pi(2H_{1}^2R - H_{1}^3) \implies \dfrac{dV_{c}}{dH_{1}} = \dfrac{\pi}{3}(4H_{1}R- 3H_{1}^2) \implies

H 1 ( 4 R 3 H 1 ) = 0 H 1 0 H 1 = 4 R 3 r = 2 2 3 R H_{1}(4R - 3H_{1}) = 0 \:\ H_{1} \neq 0 \implies H_{1} = \dfrac{4R}{3} \implies r = \dfrac{2\sqrt{2}}{3}R

Let R 1 R_{1} be the radius of circle inscribed the triangle above.

The slant height s = 2 6 3 R s = \dfrac{2\sqrt{6}}{3}R

and the area of the triangle is A = r H 1 = R 1 ( r + s ) R 1 = r H 1 r + s = A = rH_{1} = R_{1}(r + s) \implies R_{1} = \dfrac{rH_{1}}{r + s} = 4 R 3 ( 3 + 1 ) \dfrac{4R}{3(\sqrt{3} + 1)}

R = 3 ( 3 + 1 ) 4 R 1 H 1 = ( 3 + 1 ) R 1 \implies R = \dfrac{3(\sqrt{3} + 1)}{4}R_{1} \implies H_{1} = (\sqrt{3} + 1)R_{1}

and H 2 = H 1 2 R 1 = ( 3 1 ) R 1 H 1 H 2 = 3 + 1 3 1 H 2 = 3 1 3 + 1 H 1 H_{2} = H_{1} - 2R_{1} = (\sqrt{3} - 1)R_{1} \implies \dfrac{H_{1}}{H_{2}} = \dfrac{\sqrt{3} + 1}{\sqrt{3} - 1} \implies H_{2} = \dfrac{\sqrt{3} - 1}{\sqrt{3} + 1}H_{1}

Let j = 3 1 3 + 1 < 1 j = \dfrac{\sqrt{3} - 1}{\sqrt{3} + 1} < 1 , then R 1 = 4 R 3 ( 3 + 1 ) R 2 = j R 1 R 3 = j R 2 = j 2 R 1 R_{1} = \dfrac{4R}{3(\sqrt{3} + 1)} \implies R_{2} = jR_{1} \implies R_{3} = jR_{2} = j^2R_{1} and in general

R 1 = 4 R 3 ( 3 + 1 ) R_{1} = \dfrac{4R}{3(\sqrt{3} + 1)} and for each positive integer n 1 ( R n + 1 = j n R 1 ) n \geq 1 \:\ (R_{n + 1} = j^n R_{1})

V T = 4 3 π R 1 3 + 4 3 π R 1 3 n = 1 ( j 3 ) n = \implies V_{T} = \dfrac{4}{3}\pi R_{1}^3 + \dfrac{4}{3}\pi R_{1}^3\displaystyle\sum_{n = 1}^{\infty} (j^3)^n = 4 3 π R 1 3 n = 1 ( j 3 ) n 1 = \dfrac{4}{3}\pi R_{1}^3\displaystyle\sum_{n = 1}^{\infty} (j^3)^{n - 1} =

4 3 π R 1 3 ( 1 1 j 3 ) = \dfrac{4}{3}\pi R_{1}^3(\dfrac{1}{1 - j^3}) =

4 3 π 4 3 3 3 ( 3 + 1 ) 3 R 3 ( ( 3 + 1 ) 3 ( 3 + 1 ) 3 ( 3 1 ) 3 ) ) \dfrac{4}{3}\pi\dfrac{4^3}{3^3(\sqrt{3} + 1)^3}R^3(\dfrac{(\sqrt{3} + 1)^3}{(\sqrt{3} + 1)^3 - (\sqrt{3} - 1)^3)}) = 4 4 3 4 π ( 1 2 3 2 ) R 3 = = \dfrac{4^4}{3^4}\pi(\dfrac{1}{2 * 3^2})R{3} =

2 7 3 6 π R 3 V T R 3 = 2 7 3 6 π = a b π c d \dfrac{2^7}{3^6}\pi R^{3} \implies \dfrac{V_{T}}{R^3} = \dfrac{2^7}{3^6}\pi = \dfrac{a^{b}\pi}{c^{d}}

a + b + c + d = 18 \implies a + b + c+ d = \boxed{18} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...