Imaginary exponents and bases

Algebra Level pending

z n = log z ( n ) z^n=\log_z(n) The solution(s) to z z in terms of n n for the equation above can be expressed as n ln ( n ) W ( n ln ( n ) ) n \sqrt[n]{\cfrac{n\ln(n)}{W(n\ln(n))}}

Given that the principal value of the solution when n = 1 n=-1 can be expressed as i W ( i a ) a \cfrac{iW(-ia)}{a} , find a |\sqrt{\lfloor a \rfloor}|

Notations:


The answer is 1.732050808.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

When n = 1 n=-1 , then

z 1 = log z ( 1 ) = ln ( 1 ) ln z = ln ( e i π ln z = i π ln z \begin{aligned} z^{-1} & = \log_z (-1) = \frac {\ln (-1)}{\ln z} = \frac {\ln (e^{i\pi}}{\ln z} = \frac {i\pi}{\ln z} \end{aligned}

z 1 ln z = i π Let x = ln z e x = z e x x = i π x e x = i π W ( x e x ) = W ( i π ) See reference x = W ( i π ) ln z = W ( i π ) Note that z 1 ln z = i π i π z = W ( i π ) z = i W ( i π ) π \begin{aligned} \implies z^{-1} \ln z & = i \pi & \small \blue{\text{Let }x = \ln z \implies e^x = z} \\ e^{-x} \cdot x & = i \pi \\ -x e^{-x} & = - i \pi \\ W (-xe^{-x}) & = W(-i\pi) & \small \blue{\text{See reference}} \\ \implies -x & = W (-i\pi) \\ - \ln z & = W(-i\pi) & \small \blue{\text{Note that }z^{-1}\ln z = i\pi} \\ -i\pi z & = W(-i\pi) \\ \implies z & = \frac {iW(-i\pi)}\pi \end{aligned}

Therefore a = π a = \pi and a 1.73 |\sqrt {\lfloor a \rfloor} | \approx \boxed{1.73} .


Reference: What is Lambert W-function?

ln ( 1 ) = i π a = π a = 3 1.732050808 \ln (-1)=iπ\implies a=π\implies |\sqrt {\lfloor a\rfloor}|=\sqrt 3\approx \boxed {1.732050808} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...