Damned if you do it by trigo.

Calculus Level 5

Evaluate the below expression:

k = 1 n ( 2 k 1 ) sin ( 2 k 1 ) x \displaystyle \sum_{k=1}^n (2k-1)\sin(2k-1)x

1 4 sin 2 x [ ( 2 n 1 ) sin ( 2 n 1 ) x ( 2 n + 1 ) sin ( 2 n + 1 ) x ] \dfrac{1}{4\sin^2x}[(2n-1)\sin(2n-1)x - (2n+1)\sin(2n+1)x] 1 4 sin 2 x [ ( 2 n + 1 ) sin ( 2 n + 1 ) x ( 2 n 1 ) sin ( 2 n 1 ) x ] \dfrac{1}{4\sin^2x}[(2n+1)\sin(2n+1)x - (2n-1)\sin(2n-1)x] 1 4 sin 2 x [ ( 2 n 1 ) sin ( 2 n + 1 ) x ( 2 n + 1 ) sin ( 2 n 1 ) x ] \dfrac{1}{4\sin^2x}[(2n-1)\sin(2n+1)x - (2n+1)\sin(2n-1)x] 1 2 sin 2 x [ ( 2 n + 1 ) sin ( 2 n 1 ) x ( 2 n 1 ) sin ( 2 n + 1 ) x ] \dfrac{-1}{2\sin^2x}[(2n+1)\sin(2n-1)x - (2n-1)\sin(2n+1)x] 1 4 sin 2 x [ ( 2 n + 1 ) sin ( 2 n 1 ) x ( 2 n 1 ) sin ( 2 n + 1 ) x ] \dfrac{1}{4\sin^2x}[(2n+1)\sin(2n-1)x - (2n-1)\sin(2n+1)x]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us consider the sum S S , which is

S = k = 1 n cos ( 2 k 1 ) x S = \displaystyle \sum_{k=1}^{n} \cos(2k-1)x

S = cos x + cos ( 3 ) x + cos ( 5 ) x + . . . . . . . . + cos ( 2 n 1 ) x S = \cos x + \cos(3)x + \cos(5)x + . . . . . . . . + \cos(2n-1)x

Differentiating on both sides,

S 1 = S = ( sin x + 3 sin ( 3 ) x + 5 sin ( 5 ) x + . . . . . . + ( 2 n 1 ) sin ( 2 n 1 ) x ) S_{1} = S' = -(\sin x + 3\sin(3)x + 5\sin(5)x + . . . . . . + (2n-1)\sin(2n-1)x)

S S can be found using the "angles in an A.P formula".

Differentiate S S to get S = S 1 = 1 × r e q d . s u m S' = S_{1} = -1 \times reqd. sum

Rest is trivial.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...