Dance of the mosquitos

Calculus Level 3

Evaluate the curvilinear integral C F d r \displaystyle \int_C \boldsymbol{F} \cdot d \boldsymbol{r} , where F ( x , y ) = x y i + 3 y 2 j F(x, y) = xy\ \boldsymbol{i} + 3y^2\ \boldsymbol{j} and C C is a vector function r ( t ) = 11 t 4 i + t 3 j \boldsymbol{r}(t)=11t^4\ \boldsymbol{i} + t^3\ \boldsymbol{j} , where 0 t 1 0 \leq t \leq 1 .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tunk-Fey Ariawan
Feb 1, 2014

From function r ( t ) = 11 t 4 i + t 3 j \mathbf{r}(t)=11t^4\;\mathbf{i}+t^3\;\mathbf{j} , we have x = 11 t 4 d x = 44 t 3 d t , y = t 3 d y = 3 t 2 d t . \begin{aligned} x&=11t^4 \;\;\;\;\Rightarrow\;\;\; dx=44t^3\,dt,\\ y&=t^3 \;\;\;\;\;\;\;\,\Rightarrow\;\;\; dy=3t^2\,dt.\\ \end{aligned} Thus, C F d r = C ( x y d x + 3 y 2 d y ) = 0 1 ( 484 t 10 + 9 t 8 ) d t = [ 44 t 11 + t 9 ] 0 1 = 45 \begin{aligned} \int_C \mathbf{F}\cdot d\mathbf{r}&=\int_C (xy\,dx+3y^2\,dy)\\ &=\int_0^1 (484t^{10}+9t^8)\,dt\\ &=\left[44t^{11}+t^9\right]_0^1\\ &=\boxed{45} \end{aligned} # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

Lucas Tell Marchi
Jan 28, 2014

Well, first observe that × F 0 \nabla \times \mathbf{F} \neq 0 , so there is no scalar field G G such that G = F \nabla G = \mathbf{F} . In other words, we have to compute the integral by its definition. So:

C F d r = 0 1 F ( r ( t ) ) r ( t ) d t \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F(r(\mathit{t}))} \cdot \mathbf{r'(\mathit{t})} dt

We also have r ( t ) = 44 t 3 i + 3 t 2 j \mathbf{r'(\mathit{t})} = 44t^{3} \mathbf{i} + 3t^{2}\mathbf{j} and F ( r ( t ) ) = 11 t 7 i + 3 t 6 j \mathbf{F(r'(\mathit{t}))} = 11t^{7}\mathbf{i} + 3t^{6}\mathbf{j} which implies that F ( r ( t ) ) r ( t ) = 484 t 10 + 9 t 8 \mathbf{F(r(\mathit{t}))} \cdot \mathbf{r'(\mathit{t})} = 484t^{10} + 9t^{8} . Therefore the integral becomes

0 1 F ( r ( t ) ) r ( t ) = 0 1 484 t 10 + 9 t 8 d t = 45 \int_{0}^{1} \mathbf{F(r(\mathit{t}))} \cdot \mathbf{r'(\mathit{t})} = \int_{0}^{1} 484t^{10} + 9t^{8} dt = 45

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...