Dancing Triplets

Algebra Level 5

Given a sequence a n { a_{n} } with n N n \in N which satisfies

a n + 1 a n + 2 2 a n a n + 2 + a n a n + 1 = 2 a n a n + 1 a n + 2 n ( n + 1 ) ( n + 2 ) a_{n+1}a_{n+2}-2a_{n}a_{n+2}+a_{n}a_{n+1}=\cfrac{2a_{n}a_{n+1}a_{n+2}}{n(n+1)(n+2)}

and given that a 1 = 1 , a 2 = 2 a_{1}=1,a_{2}=2 .

Define f ( n ) = k = 1 n ( 1 ) k ( i = 1 k ( a i a i + 1 ) ( 1 ) i ) ( 1 ) k f(n)=\sum_{k=1}^{n} (-1)^{k}\cdot (\prod_{i=1}^{k}(a_{i}a_{i+1})^{(-1)^{i}})^{(-1)^{k}} with i , k N i,k \in N .

Evaluate f ( 2018 ) f(2018) .

This is part of the set Things Get Harder! .


The answer is 1009.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Donglin Loo
May 27, 2018

a n + 1 a n + 2 2 a n a n + 2 + a n a n + 1 = 2 a n a n + 1 a n + 2 n ( n + 1 ) ( n + 2 ) a_{n+1}a_{n+2}-2a_{n}a_{n+2}+a_{n}a_{n+1}=\cfrac{2a_{n}a_{n+1}a_{n+2}}{n(n+1)(n+2)}

Do note that a n 0 a_{n}\neq0 because if a n = 0 a_{n}=0 , a n + 1 = 0 a_{n+1}=0 or a n + 2 = 0 a_{n+2}=0 , which could never hold concurrently with a 1 0 a_{1}\neq0 and a 2 0 a_{2}\neq0 .

a n + 1 a n + 2 2 a n a n + 2 + a n a n + 1 a n a n + 1 a n + 2 = 2 n ( n + 1 ) ( n + 2 ) \Rightarrow \cfrac{a_{n+1}a_{n+2}-2a_{n}a_{n+2}+a_{n}a_{n+1}}{a_{n}a_{n+1}a_{n+2}}=\cfrac{2}{n(n+1)(n+2)}

1 a n 2 a n + 1 + 1 a n + 2 = 2 n ( n + 1 ) ( n + 2 ) \cfrac{1}{a_{n}}-\cfrac{2}{a_{n+1}}+\cfrac{1}{a_{n+2}}=\cfrac{2}{n(n+1)(n+2)}

By Partial Fraction Decomposition ,

2 n ( n + 1 ) ( n + 2 ) = 1 n 2 n + 1 + 1 n + 2 \cfrac{2}{n(n+1)(n+2)}=\cfrac{1}{n}-\cfrac{2}{n+1}+\cfrac{1}{n+2}

1 a n 2 a n + 1 + 1 a n + 2 = 1 n 2 n + 1 + 1 n + 2 \cfrac{1}{a_{n}}-\cfrac{2}{a_{n+1}}+\cfrac{1}{a_{n+2}}=\cfrac{1}{n}-\cfrac{2}{n+1}+\cfrac{1}{n+2}

We deduce that a n = n a_{n}=n

Indeed,

a 1 = 1 , a 2 = 2 a_{1}=1,a_{2}=2 ,

which is sufficient to prove that the sequence holds.


f ( 2018 ) f(2018)

= k = 1 2018 ( 1 ) k ( i = 1 k ( a i a i + 1 ) ( 1 ) i ) ( 1 ) k =\sum_{k=1}^{2018} (-1)^{k}\cdot (\prod_{i=1}^{k}(a_{i}a_{i+1})^{(-1)^{i}})^{(-1)^{k}}

= ( 1 ) 1 ( i = 1 1 ( a i a i + 1 ) ( 1 ) i ) ( 1 ) 1 =(-1)^{1}\cdot (\prod_{i=1}^{1}(a_{i}a_{i+1})^{(-1)^{i}})^{(-1)^{1}}

+ ( 1 ) 2 ( i = 1 2 ( a i a i + 1 ) ( 1 ) i ) ( 1 ) 2 + . . . +(-1)^{2}\cdot (\prod_{i=1}^{2}(a_{i}a_{i+1})^{(-1)^{i}})^{(-1)^{2}}+...

+ ( 1 ) 2017 ( i = 1 2017 ( a i a i + 1 ) ( 1 ) i ) ( 1 ) 2017 +(-1)^{2017}\cdot (\prod_{i=1}^{2017}(a_{i}a_{i+1})^{(-1)^{i}})^{(-1)^{2017}}

+ ( 1 ) 2018 ( i = 1 2018 ( a i a i + 1 ) ( 1 ) i ) ( 1 ) 2018 +(-1)^{2018}\cdot (\prod_{i=1}^{2018}(a_{i}a_{i+1})^{(-1)^{i}})^{(-1)^{2018}}

= 1 i = 1 1 ( a i a i + 1 ) ( 1 ) i + i = 1 2 ( a i a i + 1 ) ( 1 ) i + . . . 1 i = 1 2017 ( a i a i + 1 ) ( 1 ) i + i = 1 2018 ( a i a i + 1 ) ( 1 ) i =- \cfrac{1}{\prod_{i=1}^{1}(a_{i}a_{i+1})^{(-1)^{i}}}+\prod_{i=1}^{2}(a_{i}a_{i+1})^{(-1)^{i}}+...- \cfrac{1}{\prod_{i=1}^{2017}(a_{i}a_{i+1})^{(-1)^{i}}}+\prod_{i=1}^{2018}(a_{i}a_{i+1})^{(-1)^{i}}

= 1 i = 1 1 ( i ( i + 1 ) ) ( 1 ) i + i = 1 2 ( i ( i + 1 ) ) ( 1 ) i + . . . 1 i = 1 2017 ( i ( i + 1 ) ) ( 1 ) i + i = 1 2018 ( i ( i + 1 ) ) ( 1 ) i =- \cfrac{1}{\prod_{i=1}^{1}(i(i+1))^{(-1)^{i}}}+\prod_{i=1}^{2}(i(i+1))^{(-1)^{i}}+...- \cfrac{1}{\prod_{i=1}^{2017}(i(i+1))^{(-1)^{i}}}+\prod_{i=1}^{2018}(i(i+1))^{(-1)^{i}}

= 1 1 1 2 + 1 1 2 2 3 + . . . 1 1 1 2 2 3 + . . . 1 2017 2018 + 1 1 2 2 3 . . . 1 2017 2018 2018 2019 =- \cfrac{1}{\cfrac{1}{1\cdot2}}+\cfrac{1}{1\cdot2}\cdot2\cdot3+...-\cfrac{1}{\cfrac{1}{1\cdot2}\cdot2\cdot3+...\cdot\cfrac{1}{2017\cdot2018}}+\cfrac{1}{1\cdot 2}\cdot2\cdot3\cdot...\cdot\cfrac{1}{2017\cdot2018}\cdot2018\cdot2019

= 1 1 1 2 + 1 1 2 2 3 1 1 1 2 2 3 1 3 4 + . . . 1 1 1 2 2 3 1 3 4 + . . . 2016 2017 1 2017 2018 + 1 1 2 2 3 1 3 4 . . . 1 2017 2018 2018 2019 =- \cfrac{1}{\cfrac{1}{1\cdot2}}+\cfrac{1}{1\cdot2}\cdot2\cdot3-\cfrac{1}{\cfrac{1}{1\cdot2}\cdot2\cdot3\cdot\cfrac{1}{3\cdot4}}+...-\cfrac{1}{\cfrac{1}{1\cdot2}\cdot2\cdot3\cdot\cfrac{1}{3\cdot4}+...\cdot2016\cdot2017\cdot\cfrac{1}{2017\cdot2018}}+\cfrac{1}{1\cdot 2}\cdot2\cdot3\cdot\cfrac{1}{3\cdot4}\cdot...\cdot\cfrac{1}{2017\cdot2018}\cdot2018\cdot2019

= 1 1 2 + 3 1 1 4 . . . 1 1 2018 + 2019 =-\cfrac{1}{\cfrac{1}{2}}+3-\cfrac{1}{\cfrac{1}{4}}...-\cfrac{1}{\cfrac{1}{2018}}+2019

= ( 2 + 3 ) + ( 4 + 5 ) + . . . + ( 2018 + 2019 ) =(-2+3)+(-4+5)+...+(-2018+2019)

= 1 2018 2 =1\cdot\cfrac{2018}{2}

= 1009 =1009

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...