Dangerous Sigma

Calculus Level 3

n = 1 2 n + 2 n 2 n = ? \sum_{n=1}^\infty \frac {2^{\left \lfloor \sqrt n \right \rceil} +2^{- \left \lfloor \sqrt n \right \rceil}}{2^n} = \ ?

Notation: \lfloor \cdot \rceil denotes the nearest integer function.


@Adhiraj Dutta asked me to solve this problem.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let us check the first few terms of n \left \lfloor \sqrt n \right \rceil .

1 , 1 × 2 , 2 , 2 , 2 , 2 × 4 , 3 , 3 , 3 , 3 , 3 , 3 × 6 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 × 8 , , k , k , , k , k × 2 k , \underbrace{1,1}_{\times 2},\underbrace{2,2,2,2}_{\times 4},\underbrace{3,3,3,3,3,3}_{\times 6},\underbrace{4,4,4,4,4,4,4,4}_{\times 8}, \cdots, \underbrace{k, k, \dots, k, k}_{\times 2k}, \cdots

We note that the greatest n n such that n = k \left \lfloor \sqrt n \right \rceil = k is j = 1 k 2 j = k 2 + k \sum_{j=1}^k 2j = k^2 + k , then the smallest n n is ( k 1 ) 2 + ( k 1 ) + 1 = k 2 k 1 (k-1)^2 + (k-1)+1 = k^2 - k -1 . That is for n = k \left \lfloor \sqrt n \right \rceil = k , k 2 k + 1 n k 2 + k k^2 - k + 1 \le n \le k^2 + k (see proof below) and there are 2 k 2k of n n 's.

Then consider the summation over all n = k \lfloor \sqrt n \rceil = k :

n = k 2 k + 1 k 2 + k 2 n + 2 n 2 n = 2 k + 2 k 2 k 2 k + 1 + 2 k + 2 k 2 k 2 k + 2 + 2 k + 2 k 2 k 2 k + 3 + + 2 k + 2 k 2 k 2 + k = 2 k + 2 k 2 k 2 k + 1 ( 1 + 1 2 + 1 4 + + 1 2 2 k 1 ) = 2 k + 2 k 2 k 2 k + 1 ( 1 1 2 2 k 1 1 2 ) = 2 k + 2 k 2 k 2 k ( 1 1 2 2 k ) = 2 2 k + 1 2 k 2 ( 2 2 k 1 2 2 k ) = 2 4 k 1 2 k 2 + 2 k = 1 2 k 2 2 k 1 2 k 2 + 2 k = 2 2 k 2 2 k + 1 2 2 k 2 + 2 k + 1 = 2 2 ( k 1 ) 2 2 2 ( k + 1 ) 2 n = 1 2 n + 2 n 2 n = 2 k = 1 ( 1 2 ( k 1 ) 2 1 2 ( k + 1 ) 2 ) = 2 ( 1 + 1 2 ) = 3 \begin{aligned} \sum_{n=k^2-k+1}^{k^2+k} \frac {2^{\left \lfloor \sqrt n \right \rceil} +2^{- \left \lfloor \sqrt n \right \rceil}}{2^n} & = \frac {2^k + 2^{-k}}{2^{k^2-k+1}} + \frac {2^k + 2^{-k}}{2^{k^2-k+2}} + \frac {2^k + 2^{-k}}{2^{k^2-k+3}} + \cdots + \frac {2^k + 2^{-k}}{2^{k^2+k}} \\ & = \frac {2^k + 2^{-k}}{2^{k^2-k+1}} \left(1 + \frac 12 + \frac 14 + \cdots + \frac 1{2^{2k-1}}\right) \\ & = \frac {2^k + 2^{-k}}{2^{k^2-k+1}} \left(\frac {1-\frac 1{2^{2k}}}{1-\frac 12}\right) = \frac {2^k + 2^{-k}}{2^{k^2-k}} \left(1-\frac 1{2^{2k}}\right) \\ & = \frac {2^{2k} + 1}{2^{k^2}} \left(\frac {2^{2k}-1}{2^{2k}}\right) = \frac {2^{4k}-1}{2^{k^2+2k}} = \frac 1{2^{k^2-2k}} - \frac 1{2^{k^2+2k}} \\ & = \frac 2{2^{k^2-2k+1}} - \frac 2{2^{k^2+2k+1}} = \frac 2{2^{(k-1)^2}} - \frac 2{2^{(k+1)^2}} \\ \implies \sum_{n=1}^\infty \frac {2^{\left \lfloor \sqrt n \right \rceil} +2^{- \left \lfloor \sqrt n \right \rceil}}{2^n} & = 2 \sum_{k=1}^\infty \left(\frac 1{2^{(k-1)^2}} - \frac 1{2^{(k+1)^2}} \right) = 2\left(1 + \frac 12\right) = \boxed 3 \end{aligned}


Proof:

The following is using x = x + 1 2 \lfloor x \rceil = \left \lfloor x + \frac 12 \right \rfloor to prove that k 2 k + 1 + 1 2 > k \sqrt{k^2-k+1} + \frac 12 > k slightly, so that k 2 k + 1 = k 2 k + 1 + 1 2 = k \left \lfloor \sqrt{k^2-k+1} \right \rceil = \left \lfloor \sqrt{k^2-k+1} + \frac 12 \right \rfloor = k :

Assuming that k 2 k + 1 + 1 2 > k \sqrt{k^2-k+1} + \frac 12 > k is true, then k 2 k + 1 > k 1 2 k 2 k + 1 > k 2 k + 1 4 \sqrt{k^2-k+1} > k - \frac 12 \implies k^2 - k + 1 > k^2 - k + \frac 14 . So it is in fact true. Now assuming that k 2 k + 1 + 1 2 < k + 1 \sqrt{k^2-k+1} + \frac 12 < k + 1 is true, then k 2 k + 1 < k + 1 2 k 2 k + 1 < k 2 + k + 1 4 \sqrt{k^2-k+1} < k + \frac 12 \implies k^2 - k + 1 < k^2 + k + \frac 14 . It is again true. Therefore, k < k 2 k + 1 < k + 1 k 2 k + 1 = k k < \left \lfloor \sqrt{k^2-k+1} \right \rceil < k+1 \implies \left \lfloor \sqrt{k^2-k+1} \right \rceil = k . This means that ( k + 1 ) 2 ( k + 1 ) + 1 = k 2 + k + 1 = k + 1 \left \lfloor \sqrt{(k+1)^2-(k+1)+1} \right \rceil = \left \lfloor \sqrt{k^2+k+1} \right \rceil = k+1 and that n = k \left \lfloor \sqrt n \right \rceil = k , when k 2 k + 1 n k 2 + k k^2 - k + 1 \le n \le k^2 + k .

I like this problem!

Isaac YIU Math Studio - 1 year, 1 month ago

Log in to reply

I like it too. I have changed an error in my solution and prove a fact.

Chew-Seong Cheong - 1 year, 1 month ago

I do the same way as you! But I don’t know how to simplify k = 1 1 6 k 1 2 k ( k + 2 ) \sum\limits_{k=1}^\infty\frac{16^k-1}{2^{k(k+2)}}

Zhiqian Chen - 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...