n = 1 ∑ ∞ 2 n 2 ⌊ n ⌉ + 2 − ⌊ n ⌉ = ?
Notation: ⌊ ⋅ ⌉ denotes the nearest integer function.
@Adhiraj Dutta asked me to solve this problem.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I like this problem!
Log in to reply
I like it too. I have changed an error in my solution and prove a fact.
I do the same way as you! But I don’t know how to simplify k = 1 ∑ ∞ 2 k ( k + 2 ) 1 6 k − 1
Problem Loading...
Note Loading...
Set Loading...
Let us check the first few terms of ⌊ n ⌉ .
× 2 1 , 1 , × 4 2 , 2 , 2 , 2 , × 6 3 , 3 , 3 , 3 , 3 , 3 , × 8 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , ⋯ , × 2 k k , k , … , k , k , ⋯
We note that the greatest n such that ⌊ n ⌉ = k is ∑ j = 1 k 2 j = k 2 + k , then the smallest n is ( k − 1 ) 2 + ( k − 1 ) + 1 = k 2 − k − 1 . That is for ⌊ n ⌉ = k , k 2 − k + 1 ≤ n ≤ k 2 + k (see proof below) and there are 2 k of n 's.
Then consider the summation over all ⌊ n ⌉ = k :
n = k 2 − k + 1 ∑ k 2 + k 2 n 2 ⌊ n ⌉ + 2 − ⌊ n ⌉ ⟹ n = 1 ∑ ∞ 2 n 2 ⌊ n ⌉ + 2 − ⌊ n ⌉ = 2 k 2 − k + 1 2 k + 2 − k + 2 k 2 − k + 2 2 k + 2 − k + 2 k 2 − k + 3 2 k + 2 − k + ⋯ + 2 k 2 + k 2 k + 2 − k = 2 k 2 − k + 1 2 k + 2 − k ( 1 + 2 1 + 4 1 + ⋯ + 2 2 k − 1 1 ) = 2 k 2 − k + 1 2 k + 2 − k ( 1 − 2 1 1 − 2 2 k 1 ) = 2 k 2 − k 2 k + 2 − k ( 1 − 2 2 k 1 ) = 2 k 2 2 2 k + 1 ( 2 2 k 2 2 k − 1 ) = 2 k 2 + 2 k 2 4 k − 1 = 2 k 2 − 2 k 1 − 2 k 2 + 2 k 1 = 2 k 2 − 2 k + 1 2 − 2 k 2 + 2 k + 1 2 = 2 ( k − 1 ) 2 2 − 2 ( k + 1 ) 2 2 = 2 k = 1 ∑ ∞ ( 2 ( k − 1 ) 2 1 − 2 ( k + 1 ) 2 1 ) = 2 ( 1 + 2 1 ) = 3
Proof:
The following is using ⌊ x ⌉ = ⌊ x + 2 1 ⌋ to prove that k 2 − k + 1 + 2 1 > k slightly, so that ⌊ k 2 − k + 1 ⌉ = ⌊ k 2 − k + 1 + 2 1 ⌋ = k :
Assuming that k 2 − k + 1 + 2 1 > k is true, then k 2 − k + 1 > k − 2 1 ⟹ k 2 − k + 1 > k 2 − k + 4 1 . So it is in fact true. Now assuming that k 2 − k + 1 + 2 1 < k + 1 is true, then k 2 − k + 1 < k + 2 1 ⟹ k 2 − k + 1 < k 2 + k + 4 1 . It is again true. Therefore, k < ⌊ k 2 − k + 1 ⌉ < k + 1 ⟹ ⌊ k 2 − k + 1 ⌉ = k . This means that ⌊ ( k + 1 ) 2 − ( k + 1 ) + 1 ⌉ = ⌊ k 2 + k + 1 ⌉ = k + 1 and that ⌊ n ⌉ = k , when k 2 − k + 1 ≤ n ≤ k 2 + k .