n → ∞ lim S 1 2 + S 2 2 + S 3 2 + … S n 2 S 1 S n + S 2 S n − 1 + S 3 S n − 2 + S 4 S n − 3 + … + S n S 1
For natural numbers n , denote S n as the sum of an infinite geometric series whose first term is n and common ratio of n + 1 1
If the limit above equals to X , what is the value of 1 0 × X ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For your Latex to display, you have to place it within the brackets: \ ( Latex code \ ) . I've edited your solution for your reference.
Great algebraic solution, but one could easily apply L'Hopital's rule to evaluate the limit in the second half. For some reason, I thought the question asked for 1 0 a b .
Problem Loading...
Note Loading...
Set Loading...
S n = 1 − n + 1 1 n S n = n + 1 ∴ S 1 . S n + S 2 S n − 1 + S 3 S n − 3 + . . . . . . . . + S n S 1 = 2 ( n + 1 ) + 3 ( n ) + 4 ( n − 1 ) + . . . . . . + ( n + 1 ) ( 2 ) = ∑ r = 1 n ( r + 1 ) ( n − r + 2 ) = ∑ r = 1 n ( n r − r 2 + 2 r + n − r + 2 ) = ∑ r = 1 n { ( n + 1 ) r − r 2 + ( n + 2 ) } = ( n + 1 ) ∑ r = 1 n r − ∑ r = 1 n r 2 + ( n + 2 ) ∑ r = 1 n 1 = 2 ( n + 1 ) n ( n + 1 ) − 6 n ( n + 1 ) ( 2 n + 1 ) + n ( n + 2 ) = 6 n { n 2 + 9 n + 1 4 } . . . . . ( 1 ) a n d S 1 2 + S 2 2 + S 3 2 + S 4 2 + . . . . . . . . + S n 2 = 6 n { 2 n 2 + 9 n + 1 3 } . . . . ( 2 ) F r o m ( 1 ) a n d ( 2 ) , w e g e t , S 1 2 + S 2 2 + S 3 2 + S 4 2 + . . . . . . . . + S n 2 S 1 . S n + S 2 S n − 1 + S 3 S n − 3 + . . . . . . . . + S n S 1 = 2 n 2 + 9 n + 1 3 n 2 + 9 n + 1 4 = 2 + n 9 + n 2 1 3 1 + n 9 + n 2 1 4 N o w , lim n → ∞ S 1 2 + S 2 2 + S 3 2 + S 4 2 + . . . . . . . . + S n 2 S 1 . S n + S 2 S n − 1 + S 3 S n − 3 + . . . . . . . . + S n S 1 = lim n → ∞ 2 + n 9 + n 2 1 3 1 + n 9 + n 2 1 4 = 2 + 0 + 0 1 + 0 + 0 = 2 1 N o w X = 2 1 ∴ 1 0 X = 5