Second Symmetric Sum

Algebra Level 4

lim n S 1 S n + S 2 S n 1 + S 3 S n 2 + S 4 S n 3 + + S n S 1 S 1 2 + S 2 2 + S 3 2 + S n 2 \displaystyle \lim_{n \to \infty } \frac {S_1 \ S_n + S_2 \ S_{n-1} + S_3 \ S_{n-2} + S_4 \ S_{n-3} + \ldots + S_n S_1 }{S_1 ^2 + S_2 ^2+S_3 ^2 + \ldots S_n ^2}

For natural numbers n n , denote S n S_n as the sum of an infinite geometric series whose first term is n n and common ratio of 1 n + 1 \frac 1 {n+1}

If the limit above equals to X X , what is the value of 10 × X 10 \times X ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rahul Chandani
Nov 22, 2014

S n = n 1 1 n + 1 S n = n + 1 S 1 . S n + S 2 S n 1 + S 3 S n 3 + . . . . . . . . + S n S 1 = 2 ( n + 1 ) + 3 ( n ) + 4 ( n 1 ) + . . . . . . + ( n + 1 ) ( 2 ) = r = 1 n ( r + 1 ) ( n r + 2 ) = r = 1 n ( n r r 2 + 2 r + n r + 2 ) = r = 1 n { ( n + 1 ) r r 2 + ( n + 2 ) } = ( n + 1 ) r = 1 n r r = 1 n r 2 + ( n + 2 ) r = 1 n 1 = ( n + 1 ) n ( n + 1 ) 2 n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 2 ) = n 6 { n 2 + 9 n + 14 } . . . . . ( 1 ) a n d S 1 2 + S 2 2 + S 3 2 + S 4 2 + . . . . . . . . + S n 2 = n 6 { 2 n 2 + 9 n + 13 } . . . . ( 2 ) F r o m ( 1 ) a n d ( 2 ) , w e g e t , S 1 . S n + S 2 S n 1 + S 3 S n 3 + . . . . . . . . + S n S 1 S 1 2 + S 2 2 + S 3 2 + S 4 2 + . . . . . . . . + S n 2 = n 2 + 9 n + 14 2 n 2 + 9 n + 13 = 1 + 9 n + 14 n 2 2 + 9 n + 13 n 2 N o w , lim n S 1 . S n + S 2 S n 1 + S 3 S n 3 + . . . . . . . . + S n S 1 S 1 2 + S 2 2 + S 3 2 + S 4 2 + . . . . . . . . + S n 2 = lim n 1 + 9 n + 14 n 2 2 + 9 n + 13 n 2 = 1 + 0 + 0 2 + 0 + 0 = 1 2 N o w X = 1 2 10 X = 5 { S }_{ n }\quad =\quad \frac { n }{ 1\quad -\quad \frac { 1 }{ n+1 } } \\ { S }_{ n }\quad =\quad n+1\\ \therefore \quad \quad { S }_{ 1 }.{ S }_{ n }+{ S }_{ 2 }{ S }_{ n-1 }+{ S }_{ 3 }{ S }_{ n-3 }+........+{ S }_{ n }{ S }_{ 1 }\quad \\ =\quad \quad \quad \quad 2(n+1)\quad +\quad 3(n)\quad +\quad 4(n-1)\quad +\quad ......\quad +\quad (n+1)(2)\\ =\quad \quad \quad \quad \sum _{ r=1 }^{ n }{ (r+1)(n-r+2) } \\ =\quad \quad \quad \quad \sum _{ r=1 }^{ n }{ (nr-{ r }^{ 2 } } +2r+n-r+2)\\ =\quad \quad \quad \quad \sum _{ r=1 }^{ n }{ \left\{ (n+1)r\quad -\quad { r }^{ 2 }\quad +\quad (n+2) \right\} } \\ =\quad \quad \quad \quad (n+1)\sum _{ r=1 }^{ n }{ r } \quad -\quad \sum _{ r=1 }^{ n }{ { r }^{ 2 } } \quad +\quad (n+2)\sum _{ r=1 }^{ n }{ 1 } \\ =\quad \quad \quad \quad \frac { (n+1)n(n+1) }{ 2 } \quad -\quad \frac { n(n+1)(2n+1) }{ 6 } \quad +\quad n(n+2)\\ =\quad \quad \quad \quad \frac { n }{ 6 } \left\{ { n }^{ 2 }+9n+14 \right\} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad .....(1)\\ \\ and\quad \quad \quad { S }_{ 1 }^{ 2 }+{ S }_{ 2 }^{ 2 }+{ S }_{ 3 }^{ 2 }+{ S }_{ 4 }^{ 2 }+\quad ........+{ S }_{ n }^{ 2 }\\ =\quad \quad \quad \quad \quad \frac { n }{ 6 } \left\{ 2{ n }^{ 2 }+9n+13 \right\} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ....(2)\\ From\quad (1)\quad and\quad (2),\quad we\quad get,\\ \\ \frac { { S }_{ 1 }.{ S }_{ n }+{ S }_{ 2 }{ S }_{ n-1 }+{ S }_{ 3 }{ S }_{ n-3 }+........+{ S }_{ n }{ S }_{ 1 } }{ { S }_{ 1 }^{ 2 }+{ S }_{ 2 }^{ 2 }+{ S }_{ 3 }^{ 2 }+{ S }_{ 4 }^{ 2 }+\quad ........+{ S }_{ n }^{ 2 } } =\quad \frac { { n }^{ 2 }+9n+14 }{ 2{ n }^{ 2 }+9n+13 } \\ =\quad \quad \quad \quad \frac { 1\quad +\quad \frac { 9 }{ n } +\quad \frac { 14 }{ { n }^{ 2 } } }{ 2\quad +\quad \frac { 9 }{ n } \quad +\frac { 13 }{ { n }^{ 2 } } } \\ \\ Now,\quad \lim _{ n\rightarrow \infty }{ \frac { { S }_{ 1 }.{ S }_{ n }+{ S }_{ 2 }{ S }_{ n-1 }+{ S }_{ 3 }{ S }_{ n-3 }+........+{ S }_{ n }{ S }_{ 1 } }{ { S }_{ 1 }^{ 2 }+{ S }_{ 2 }^{ 2 }+{ S }_{ 3 }^{ 2 }+{ S }_{ 4 }^{ 2 }+\quad ........+{ S }_{ n }^{ 2 } } } \\ =\quad \quad \quad \quad \lim _{ n\rightarrow \infty }{ \frac { 1\quad +\quad \frac { 9 }{ n } +\quad \frac { 14 }{ { n }^{ 2 } } }{ 2\quad +\quad \frac { 9 }{ n } \quad +\frac { 13 }{ { n }^{ 2 } } } } \\ =\quad \quad \quad \quad \quad \frac { 1+0+0 }{ 2+0+0 } =\quad \frac { 1 }{ 2 } \\ Now\quad X \quad =\quad \frac { 1 }{ 2 } \\ \therefore \quad 10X \quad =\quad 5

For your Latex to display, you have to place it within the brackets: \ ( Latex code \ ) \backslash ( \text{Latex code } \backslash ) . I've edited your solution for your reference.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

Thanku! :)

Rahul Chandani - 6 years, 6 months ago

Great algebraic solution, but one could easily apply L'Hopital's rule to evaluate the limit in the second half. For some reason, I thought the question asked for 10 b a 10\frac{b}{a} .

Jake Lai - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...